Все о гормонах химия. Сообщение на тему гормоны по химии

Из множества частей мозга, различного назначения, можно выделить три органа, работающие в тесной связке друг с дружкой: гипофиз, гипоталамус и эпифиз. Все три этих органа, занимают довольно небольшой объем (по сравнению с общим объемом мозга) – однако несут очень важную функцию: они синтезируют гормоны.

Жизнь прекрасна. Главное – правильно подобрать антидепрессанты.

Фрейд лукавил, когда говорил "Всё начинается тут" – и показывал... на ширинку. На самом деле, всё начинается в мозгу, или в "мозге" – кто как привык склонять этот орган.

Из множества частей мозга, различного назначения, можно выделить три органа, работающие в тесной связке друг с дружкой: гипофиз, гипоталамус и эпифиз . Все три этих органа, занимают довольно небольшой объем (по сравнению с общим объемом мозга) – однако несут очень важную функцию: они синтезируют гормоны . Эти органы являются одними из главных желёз секреции эндокринной системы. Не менее важными железами эндокринной секреции являются надпочечники.

Эндокринная система – система регуляции деятельности внутренних органов посредством гормонов, выделяемых эндокринными клетками непосредственно в кровь, либо диффундирующих через межклеточное пространство в соседние клетки.

Гормоны – это сигнальные химические вещества, оказывающие сложное и многогранное воздействие на организ м вцелом либо на определённые органы и системы-мишени. Гормоны служат регуляторами определённых процессов в определённых органах и системах.

1960-е годы ознаменовались существенными открытиями в области нейробиологии. Именно в это время ученые убедились, что одних электрических разрядов недостаточно для передачи передачи импульсов между нервными клетками.

Дело в том, что нервные импульсы переходят от одной клетки к другой в нервных окончаниях, называемых "синапсами ". Как выяснилось, большинство синапсов имеют отнюдь не электрический как считалось ранее, а химический механизм действия.

При этом в передаче нервных сигналов участвуют нейромедиаторы (нейротранмиттеры) – биологически активные вещества, являющихся химическим передатчиком импульсов между нервными клетками человеческого мозга.

1. Настроение: серотонин

Серотонин – это нейромедиатор – одно из веществ, являющихся химическим передатчиком импульсов между нервными клетками человеческого мозга . Восприимчивые к серотонину нейроны расположены практически по всему мозгу.

Больше всего их в так называемых "ядрах шва" – участках ствола мозга. Именно там и происходит синтез серотонина в головном мозге. Кроме головного мозга, большое количество серотонина вырабатывается слизистыми оболочками желудочно-кишечного тракта.

Направления распространения серотониновых импульсов из этих ядер затрагивают многие области как головного, так и спинного мозга.

Трудно переоценить ту роль, которую выполняет серотонин в человеческом организме:

    В передней части мозга под воздействием серотонина стимулируются области, ответственные за процесс познавательной активности .

    Поступающий в спинной мозг серотонин, положительно влияет на двигательную активность и тонус мышц . Это состояние можно охарактеризовать фразой "горы сверну".

    И наконец самое главное – повышение серотонинэргической активности создает в коре головного мозга ощущение подъема настроения . Пока ограничимся именно таким термином, хотя в различных сочетаниях серотонина с другими гормонами – мы получаем весь спектр эмоций "удовлетворения" и "эйфории" – но об этом мы поговорим чуть позже.

Недостаток серотонина, напротив – вызывает снижение настроения и депрессию.

Кроме настроения, серотонин ответственен за самообладание или эмоциональную устойчивост ь (Mehlman et al., 1994). Серотонин контролирует восприимчивость мозговых рецепторов к стрессовым гормонам адреналину и норадреналину (о которых будет рассказано далее).

У людей с пониженным уровнем серотонина, малейшие поводы вызывают обильную стрессовую реакцию. Отдельные исследователи считают, что доминирование особи в социальной иерархии обусловлено именно высоким уровнем серотонина.

Для того чтобы серотонин вырабатывался в нашем организме, необходимы две вещи:

    поступление с пищей аминокислоты триптофана – так как именно она нужна для непосредственного синтеза серотонина в синапсах

    поступление глюкозы с углеводной пищей => стимуляция выброса инсулина в кровь => стимуляция катаболизма белка в тканях => повышение уровня триптофана в крови.

С этими фактами напрямую связаны такие явления: булимия и так называемый "синдром сладкоежки".

Всё дело в том, что серотонин способен вызвать субъективное ощущение сытости . Когда в организм поступает пища, в том числе содержащая триптофан – увеличивается выработка серотонина, что повышает настроение. Мозг быстро улавливает связь между этими явлениями – и в случае депрессии (серотонинового голодания), незамедлительно "требует" дополнительного поступления пищи с триптофаном или глюкозой.

Как ни странно, наиболее богаты триптофаном продукты, которые почти целиком состоит из углеводов, – такие, например, как хлеб, бананы, шоколад или чистые углеводы: столовый сахар или фруктозу. Это косвенно подтверждает бытующее в обществе утверждение, что сладкоешки / полные люди – более добрые, чем худые .

Серотонин метаболизируется в организме с помощью моноаминоксидазы-А (МАО-А) до 5-гидроксииндолуксусной кислоты, которая затем выводится с мочой. Первые Антидепрессанты являлись ингибиторами моноаминоксидазы.

Однако из-за большого количества побочных эффектов, вызванных широким биологическим действием моноаминоксидазы, в настоящее время в качестве андипепрессантов применяются "ингибиторы обратного захвата серотонина". Эти вещества затрудняют обратный захват серотонина в синапсах, тем самым повышая его концентрацию в крови.

2. День и ночь: мелатонин

Мы ужели выяснили, что серотонин во-первых, вырабатывается за счёт обогащенной триптофаном и глюкозой пищей, а во-вторых – сам притупляет чувство голода. Мы выяснили, почему серотонин даёт прилив физических сил.

У серотонина в организме есть антипод – это мелатонин . Они синтезируется в эпифизе ("шишковидной железе") из серотонина. Секреция мелатонина напрямую зависит от общего уровня освещенности – избыток света тормозит его образование, а снижение освещённости, напротив – повышает синтез мелатонина.

Именно под влиянием мелатонина в вырабатывается гамма-аминомасляная кислота, которая, в свою очередь тормозит синтез серотонина. 70% суточной продукции мелатонина приходится на ночные часы.

Именно синтезирующийся в эпифизе мелатонин ответственен за циркадные ритмы – внутренние биологические часы человека. Как правильно замечено, циркадный ритм напрямую не определяется внешними причинами, такими как солнечный свет и температура, но зависит от них – так как зависит от них синтез мелатонина.

Именно низкая освещённость и, как следствие, высокая выработка мелатонина, являются основными причинами сезонной депрессии . Вспомните эмоциональный подъём, когда зимой выдаётся ясный погожий день. Теперь вы знаете, почему это происходит – в этот день у вас снижается мелатонин, и повышается серотонин.

Замечу, что мелатонин вырабатывается не сам по себе – а из серотонина . И в то же время, сам притупляет его выработку. На этих, почти диалектических "единстве и борьбе противоположностей" и устроен внутренний механизм саморегуляции циркадных ритмов. Именно поэтому в состоянии депрессии, люди страдают бессонницей – для того, чтобы погрузиться в сон нужен мелатонин, а без серотонина его никак не получить.

3. Удовольствие: дофамин

Рассмотрим ещё один нейромедиатор – дофамин (или допамин) – вещество группы фенилэтиламинов. Тяжело переоценить роль дофамина в организме человека – как и серотонин, он выступает в качестве нейромедиатора и гормона одновременно. От него косвенно зависят и сердечная деятельность, и двигательная активность, и даже рвотный рефлекс.

Дофамин-гормон вырабатывается мозговым веществом надпочечников, а дофамин-нейромедиатор – областью среднего мозга, называемой "черным телом".

Нас интересует дофамин-нейромедиатор. Известны четыре "дофаминовых пути" – проводящих пути мозга, в которых роль переносчика нервного имульса играет дофамин. Один из них – мезолимбический путь – считается ответственным за продуцирование чувств удовольствия.

Уровень дофамина достигает максимума во время таких действий, как еда и секс.

Почему нам приятно от мыслей о предстоящем удовольствии? Почему мы можем часами смаковать предстоящее наслаждение? Последние исследования показывают, что выработка дофамина начинается ещё в процессе ожидания удовольствия. Этот эффект схож с рефлексом предварительного слюноотделения у "собаки Павлова".

Считается, что дофамин также участвует в процессе принятия человеком решений. По крайней мере, среди людей с нарушением синтеза/транспорта дофамина многие испытывают затруднения с принятием решений. Это связано с тем, что дофамин отвечает за "чувство награды", которое зачастую позволяет принять решение, обдумывая то или иное действие ещё на подсознательном уровне.

К сожалению, нейробиология ещё только развивается. В частности, относительно недавняя нобелевская премия за 2000 год в области биологии была присуждена за открытия в области "передачи сигналов в нервной системе". Поэтому, получить из русскоязычного интернета более подробную информацию по нейромедиаторам, на данный момент не представляется возможным.

4. Страх и ярость: адреналин и норадреналин

Но далеко не все жизненно важные процессы управления человеческим организмом проходят в головном мозге. Надпочечники – парные эндокринные железы всех позвоночных также играют большую роль в регуляции его функций. Именно в них вырабатываются два важнейших гормона: адреналин и норадреналин.

Адреналин – важнейший гормон, реализующий реакции типа «бей или беги» . Его секреция резко повышается при стрессовых состояниях, пограничных ситуациях, ощущении опасности, при тревоге, страхе, при травмах, ожогах и шоковых состояниях.

Адреналин – не нейромедиатор, а гормон – то есть он не участвует напрямую в продвижении нервных импульсов. Зато, поступив в кровь, он вызывает целую бурю реакций в организме :

Усиливает и учащает сердцебиение

Вызывает сужение сосудов мускулатуры, брюшной полости, слизистых оболочек

Расслабляет мускулатуру кишечника, и расширяет зрачки. Да-да, выражение "у страха глаза велики" и байки о встречах охотников с медведями – имеют под собой абсолютно научные основания.

Основная задача адреналина – адаптировать организм к стрессовой ситуации . Адреналин улучшает функциональную способность скелетных мышц . При продолжительном воздействии адреналина отмечается увеличение размеров миокарда и скелетных мышц. Вместе с тем длительное воздействие высоких концентраций адреналина приводит к усиленному белковому обмену, уменьшению мышечной массы и силы, похуданию и истощению. Это объясняет исхудание и истощение при дистрессе (стрессе, превышающем адаптационные возможности организма).

Норадреналин – гормон и нейромедиатор. Норадреналин также повышается при стрессе, шоке, травмах, тревоге, страхе, нервном напряжении . В отличии от адреналина, основное действие норадреналина заключается в исключительно в сужении сосудов и повышении артериального давления. Сосудосуживающий эффект норадреналина выше, хотя продолжительность его действия короче.

И адреналин, и норадреналин способны вызывать тремор – то есть дрожание конечностей, подбородка . Особенно ясно эта реакция проявляется у детей возраста 2-5 лет, при наступлении стрессовой ситуации.

Непосредственно после определения ситуации как стрессовой, гипоталамус выделяет в кровь кортикотропин (адренокортикотропный гормон), который, достигнув надпочечников, побуждает синтез норадреналина и адреналина.

"Бодрящий" эффект никотина обеспечивается выбросом в кровь адреналина и норадреналина . В среднем достаточно около 7 секунд после вдыхания табачного дыма, чтобы никотин достиг мозга. При этом происходит кратковременное ускорение сердцебиения, увеличение кровяного давления, учащение дыхания и улучшение кровоснабжения головного мозга. Сопровождающий это выброс дофамина способствует закреплению никотиновой зависимости .

Интересно, что у разных животных соотношение клеток, синтезирующих адреналин и к норадреналин – колеблется. Норадреноциты весьма многочисленны в надпочечниках хищников и почти не встречаются у их потенциальных жертв. Например, у кроликов и морских свинок они почти совсем отсутствуют. Может, именно поэтому лев – царь зверей, а кролик всего лишь кролик?

Считается, что норадреналин – гормон ярости, а адреналин – гормон страха. Норадреналин вызывает в человеке ощущение злобы, ярости, вседозволенности. Адреналин и норадреналин тесно связаны друг с другом. В надпочечниках адреналин синтезируется из норадреналина . Что ещё раз подтверждает давно известную мысль, что эмоции страха и ненависти родственны, и порождаются одна из другой.

Без гормонов надпочечников организм оказывается "беззащитным" перед лицом любой опасности . Подтверждение этому - многочисленные эксперименты: животные, у которых удаляли мозговое вещество надпочечников, оказывались неспособными делать какие-либо стрессовые усилия: например, бежать от надвигающейся опасности, защищаться, или добывать пищу.

5. Счастье есть:

В замечательной книге "Секреты поведения Homo Sapiens" написано: "Для обозначения выраженного подъема настроения обычно используют понятия "радость", "счастье" и "эйфория". Такое субъективное состояние аналогично удовольствию, возникающему при поедании изысканного блюда после сильного голода." Теперь мы уже знаем, что за радость отвечает серотонин, а за удовольствие – дофамин. Но есть ещё две группы гормонов, без которых "счастье" не было полным.

5.1 Эндогенные опиаты (эндорфины, энкефалины)

Во-первых, это семейство эндорфинов, и самый распространённый из них – бета-эндорфин.

Эндорфины были открыты в 70-х годах прошлого века, когда европейские ученые стали исследовать механизмы обезболивающего действия китайской системы иглоукалывания. Было обнаружено, что при введении в организм человека медикаментов, блокирующих обезболивающее действие наркотических анальгетиков, эффект обезболивания методом иглоукалывания исчезает.

Было предположено, что при иглоукалывании в организме человека выделяются вещества, по химической природе близкие к морфину. Такие вещества получили условное название "эндорфины", или "внутренние морфины".

Схожи по действию с эндорфинами – энкефалины . Некоторые исследователи их относят к подмножеству эндорфинов, некоторые – выделяют в отдельную группу нейротрансмиттеров. В других работах, считается, что энкефалины – это побочный продукт не полностью использованных эндорфинов. Энкефалины имеют очень схожее с эндорфинами действием. Однако их обезболивание слабее и более кратковременное.

Физиологически, эндорфины и энкефалины обладают сильнейшим обезболивающим, противошоковым и антистрессовым действием, они понижают аппетит и уменьшают чувствительность отдельных отделов центральной нервной системы. "Слеп от счастья" – если говорить утрировано.

Эндорфины нормализуют артериальное давление, частоту дыхания, ускоряют заживление поврежденных тканей, образование костной мозоли при переломах. Счастливые люди выздоравливают быстрее – это научно доказанный факт.

В настоящее время считается, что эндорфины синтезируются в гипофизе и гипоталамусе, а энкефалины – в гипоталамусе . Ещё одно различие эндорфинов и энкефалинов – в том, что эндорфины оказывают селективное, а энкефалины – более общее угнетающее воздействие на рецепторы центральной нервной системы.

Основная мишень эндорфинов – это так называемая опиоидная система организма, и опиоидные рецепторы в частности . Благодаря сходству с наркотическими веществами вроде морфия, эндорфины и энкефалины получили название "эндогенные (то есть внутренние) опиаты".

Психологически, воздействуя на опиоидные рецепторы, и эндорфины и энкефалины вызывают эйфорию – "форму болезненно-повышенного настроения". Эйфория включает в себя не только эмоциональные изменения, но и целый ряд психических и соматических ощущений, чувствований, за счет которых достигается положительный эмоциональный сдвиг.

Эйфория – это один из "побочных эффектов" борьбы со стрессом . После успешно преодоленных нагрузок, после выхода из трудной ситуации организм получает "пряник", вознаграждение в виде положительных эмоций. Но стресс – это только один из множества случаев выработки эндорфинов . Опытным путём установлено, что выброс эндорфинов у человека напрямую связан с ощущением счастья, сиюминутного блаженства.

Есть мнение, что эйфория от просмотра произведений искусства, прослушивания музыки – также имеет эндорфинную природу . Эйфория оргазма – это тоже эндорфины, но про оргазм мы поговорим чуть позже. Ещё один способ выработки эндорфинов – занятия спортом. Причина популярности спорта не только в культе силы, но и в выбросе эндорфинов, который происходит, когда стрессовая нагрузка прекращается.

Всем известен классический опыт с крысами, когда в мозг крысы вживляли электроды, стимулирующие гипоталамус. Крыса могла нажатием на педаль, приводить электроды в действие. В результате опыта крыса, установив связь между педалью и удовольствием – умирала от жажды или от истощения, истошно нажимая на педаль.. Обычно этот опыт приводят в качестве классического примера наркотической зависимости. А механизм крысиного удовольствия – те же самые эндорфины, вырабатывавшиеся в гипоталамусе под действием электрических разрядов.

Кроме электрического стимулирования гипоталамуса, есть ещё один способ словить "вечный кайф". Это опиаты: начиная от натурального опиума – млечного сока недозрелых коробочек опийного мака, и содержащихся в нём морфина и кодеина до синтетического героина – который во много раз сильнее морфина, и гораздо быстрее вызывает привыкание.

Механизм привыкания к опиатам заключается в приспособлении организма к повышенной концентрации морфинов, путём снижения чувствительности опиоидных рецепторов. В результате, во-первых повышается доза морфинов, необходимая для получения "эйфории", а во-вторых, рецепторы становятся практически не чувствительны к малым дозам внутренних эндорфинов.

Показательно, что если здоровому человеку, ни разу не употреблявшему наркотики, ввести препарат налоксон, блокирующий опиоидные рецепторы – он погружается в депрессию, и испытывает психическое состояние дискомфорта, сродни наркотической "ломке". Это ещё раз подтверждает важность опиоидных рецепторов в ощущении человеком счастья.

Между прочим, привыкание к морфинам проявляется не только у наркоманов. Всем известно, что с возрастом, всё меньше событий способны доставить человеку ощущение счастья. "Станут речи мудрей, а улыбка скупа, и слабей новогодний дурман".. Так вот, этот дурман слабее именно из-за привыкания рецепторов к эндорфинам. Поэтому "опьянеть от счастья", взрослому человеку гораздо тяжелее, чем ребёнку.

Есть мнение, что эндогенные опиаты (как и каннобоиды, о которых я расскажу ниже) помимо своих уже описанных функций, выполняют регуляцию "второго уровня" – регулируют адреналиновую, дофаминовую, и серотониновую системы. То есть, это нейрорегуляторы, контролирующие другие нейрорегуляторы. Однако подробного обоснования этой точки зрения в массовой литературе я пока не встречал.

5.2 Эндогенные каннабиоиды (анандамид)

До недавних пор, эндогенные морфины считались единственными нейромедиаторами, создающими ощущения счастливой эйфории. Однако в 1992 году в головном мозге было найдено вещество "анандамид", способное имитировать все известные эффекты марихуаны. К эндогенным каннабиоидам относится также вещество "2-арахидоноил-глицерол".

До сих пор не полностью определено назначение эндогенных каннабиоидов. В человеческом организме существует целая система каннабиоидных рецепторов.

В 2003 году, опытным путём было установлено, что эндоканнабиноиды играют важную роль в устранении отрицательных эмоций и боли, связанных с прошлым опытом. В начале опыта определённый звук сочетался с непродолжительным раздражением лапок грызуна слабым электрическим током. Через некоторое время, услышав звук, животное замирает в ожидании электрического удара. Если же звук раз за разом не сопровождается электроболевым раздражением, оно перестаёт его бояться: выработанный условный рефлекс угасает. Оказывается, животные с блокированными каннабиоидными рецепторами не могли освободиться от страха, когда звук переставал сочетаться с болью.

Так что, если вы не можете избавиться от отрицательных воспоминаний, связанных с прошлым опытом – в вашем орагнизме не хватает каннабиоидов. Эндогенных, или экстрагенных – это кому что больше нравится..

6. Влюблённость: фенилэтиламин

2-фенилэтиламин (или PEA) – является нейротрансмиттером и нейромодулятором энергии межличностных отношений. Выделение РЕА повышает эмоциональную теплоту, симпатию, сексуальность.

Хотя фенилэтиламин является начальным соединением для других нейромедиаторов, и сам он часто выделяется вместе дофамином и серотонином , тем не менее, его действие в эмоциональной области единственно в своем роде. Для РЕА совсем недавно был идентифицирован специфический рецептор, локализованный в миндалевидном теле – ядре мозга.

Своеобразно также короткое время жизни фенилэтиламина (минуты) и его разрушение под действием энзима моноамин-оксигеназы. Короткое время жизни свидетельствует о специальной биодинамической роли РЕА, связанной с очень кратко действующим эффектом раздражения. Напротив, другие нейроамины (допамин, серотонин и норадреналин) обладают большими временами жизни (часы).

Влияние фенилэтиламина на поведение человека принято объяснять на основе гипотезы М. Либовица (называемой ещё "психохимической гипотезой") о влюбленности . Несмотря на спекулятивность этой гипотезы, она позволяет хотя бы объяснить роль фенилэтиламина в регулировании аффектов. Если мы встречаем кого-либо, кто нам нравится, в мозгу начинает вырабатываться фенилэтиламин. Мы, люди, судим о привлекательности партнера или партнерши в первую очередь по оптическому впечатлению, а не по запаху или осязанию, как большинство млекопитающих. Романтическая любовь может вспыхнуть буквально с первого взгляда. Синтез фенилэтиламина в мозгу и его распределение по всей нервной системе играют роль при возникновении возбуждения, охватывающего нас при взгляде на любимого человека, и стремления к нему, когда его нет с нами.

Фенилэтиламин содержится в шоколаде, в сладостях (содержащих аспартам), в диэтических напитках . И всё же все эти источники не дают того результата, какой дает фенилэтиламин, выделяемый мозгом (то есть эндогенный). Главная причина – быстрое разрушение фенилэтиламина под действием энзима моноаминоксидазы-Б (МАО-Б) – основное его количество расщепляется еще на начальной стадии потребления. Любовные напитки существуют в сказании о Тристане и Изольде или в драме Шекспира «Сон в летнюю ночь», в действительности же наша химическая система ревниво охраняет свое исключительное право контроля наших эмоций.

7. Доверие: окситоцин

Окситоцин – ещё один гормон и нейротрансмиттер гипофиза. Физиологическое действие окситоцина-гормона заключается в увеличении частоты сокращений матки и альвеолы молочных желез у женщин. В медицине, окситоцин используется для стимуляции родовой деятельности.

Окситоцин также участвует в реакции сексуального возбуждения. Именно окситоцин участвует в эрекции сосков (как у мужчин, так и у женщин). Благодаря окситоцину у женщины в период лактации увеличивается выработка грудного молока, при близком контакте с новорождённым ребёнком или при раздражении сосков.

Отдельные исследователи считают, что окситоцин участвует в механизме мужской эрекции – по крайней мере, положительный эффект давала инъекция его в отдельные участки мозга. Однако, смело можно утверждать, что роль окситоцина в механизме эрекции – не определяющая.

Сравнительно недавно (2005 год) была открыто психо-физиологическая роль окситоцина -нейромодулятора. В ходе нескольких экспериментов, выяснилось, что окситоцин увеличивает степень доверия к конкретному человеку.

В опыте приняли участие 178 студентов цюрихских университетов (исключительно мужчины). Им предложили стать партнерами в игре, где одни выполняли роль инвесторов, а другие – брокеров. В начале эксперимента каждый участник получил личный финансовый фонд. Инвестор мог оставить все эти условные деньги себе, или же передать их (все или частично) своему брокеру. По условиям игры брокер на каждой такой операции наваривал 200% прибыли, то есть вклад "инвестора" до него доходил в тройном размере. При этом брокер мог либо оставить у себя все эти деньги, либо возвратить инвестору любую их часть. На этом игра заканчивалась, и партнеры приступали к подсчету выигрышей и потерь. Чтобы создать настоящий азарт и корыстный интерес, экспериментаторы в конце опыта выдавали за каждую "денежную единицу" 40 вполне реальных швейцарских сантимов.

Ключевой аспект эксперимента заключался в том, что одним инвесторам давали вдыхать аэрозольный препарат окситоцина, а остальным – нейтральный спрей . Оказалось, что инвесторы, которые получали окситоцин, много больше доверяли своим брокерам. 45% из них предпочли вложить в дело все 12 единиц своего капитала. 21% не сделали никаких вложений или проявили минимум доверия. А вот среди "плацебников" все обстояло точно наоборот: максимум доверия – 21%, минимум – 45%.

Однако из этих результатов отнюдь не следует, что окситоцин действительно увеличивает степень доверия к партнеру по "деловой операции". Чтобы исключить интерпретацию опыта, якобы "под воздействием окситоцина люди перестают бояться рисковать" был поставлен дополнительный эксперимент, с прежними условиями. Однако, размер получаемой инвестором выплаты определял уже не брокер, а генератор случайных чисел. В этой ситуации обе группы "инвесторов" действовали одинаково, так что окситоцин не оказал на них никакого влияния. Этот контрольный опыт продемонстрировал, что окситоцин увеличивает степень доверия к конкретному человеку, но отнюдь не подталкивает играть наудачу.

В настоящий момент считается, что уровень окситоцина повышается при близком контакте с человеком, особенно при прикосновениях и поглаживаниях. Ещё больше окситоцина выделяется в процессе полового акта, и непосредственно в момент оргазма – как у мужчин, так и у женщин.

Окситоцин участвует в формировании связей между людьми, в том числе связей между матерью и ребёнком . Окситоцин понижает уровень тревожности и напряжения человека при контактах с другими людьми. Окситоцин стимулирует выработку эндорфинов, вызывающих ощущение "счастья" . Кошка, которая мурлыкает в ответ на ваши поглаживания – типичный пример действия окситоцина.

Интересный эксперимент был проведён в 2005 году. Исследования касались детей-сирот, которые провели первые месяцы или годы жизни в приюте, а потом были усыновлены благополучными семьями. Дети играли в компьютерную игру, сидя на коленях у своей матери (родной или приемной), после этого измерялся уровень окситоцина и сравнивался с уровнем, измеренным перед началом эксперимента. В другой раз те же дети играли в ту же игру, сидя на коленях у незнакомой женщины.

Оказалось, что у домашних детей после общения с мамой уровень окситоцина заметно повышается, тогда как совместная игра с незнакомой женщиной такого эффекта не вызывала. У бывших сирот окситоцин не повышался ни от контакта с приемной матерью, ни от общения с незнакомкой. Эти печальные результаты показывают, что способность радоваться общению с близким человеком, по-видимому, формируется в первые месяцы жизни.

8. Привязанность: вазопрессин

Вазопрессин – гормон гипофиза, по молекулярному строению схожий с окситоцином . Основная физиологическая функция вазопрессина – увеличение реабсорбцииводы почками, тем самым повышая концентрацию мочи и уменьшая её объём.

В 1999 на примере мышей-полёвок было неожиданно открыто ещё одно свойство вазопрессина. Дело в том, что существует два вида мышей: полёвка-степная и полёвка-горная. При этом степные полёвки относятся к 3% млекопитающих, реализующих моногамные отношения. Когда степные полевки спариваются, выделяются два гормона: окситоцин и вазопрессин. Если выделение этих гормонов блокировать, половые отношения между степными полевками становятся такими же мимолетными, как и у их "распутных" горных родственников. Наибольший эффект приносит именно блокировка вазопрессина.

В данном случае отличительный признак – запах . Крысы и мыши узнают друг друга по запаху. Учёные утверждают, что степные полёвки привязываются друг к другу благодаря действию механизма полового импринтинга, опосредованного запахом. Более того, ученые предполагают, что у других моногамных животных, включая человека, эволюция механизма поощрения, участвующего в формировании этой привязанности, протекала схожим образом, в том числе с целью регулирования моногамии.

Среди исследованных человекоподобных обезьян уровень вазопрессина в центрах поощрения мозга у моногамных мартышек был выше, чем у немоногамных макак-резусов. Считается, что животные, устанавливающие прочные социальные отношения, поступают так благодаря наличию и особому расположению их рецепторов для восприятия вазопрессина и окситоцина. Чем больше рецепторов находится в областях, связанных с поощрением, тем большее удовольствие доставляет социальное взаимодействие.

По альтернативной гипотезе, считается что моногамия полёвок вызывается изменениями в структуре и количестве дофаминовых рецепторо в.

9. Привлечение: феромоны (андростерон и копулины)

В этой главе впервые пойдёт речь о двух веществах, весьма далёких от нейробиологии – но всё же тесно связанных с химией человеческих взаимоотношений. Это феромоны – продукты внешней секреции, выделяемые некоторыми видами животных и обеспечивающие химическую коммуникацию между особями одного вида. В книге "Эволюционная психология" Д. и Л. Палмер рассматриваются человеческие ферромоны: андростерон и копулины.

Андростерон (или андростенон) – это мужской половой гормон, производный от гормона тестостерона. Но нам сейчас важно не его гормональное действие, а то, что он содержится в моче и поте самцов многих видов млекопитающих. Например, если предъявить самке свиньи во время овуляции андростерон – то она немедленно выгибает спину и принимает позу спаривания с разведенными в стороны ногами. Такая жесткая закономерность в реакции наблюдается у свиней только во время овуляции. В остальное время она индифферентна к этому запаху.

Забавно, что деликатесные грибы трюфели самки свиней отыскивают именно благодаря содержащемуся в их запаху вещества, схожего с андростероном.

Исследования 1986, 1997 годов, показали что мужчины неизменно воспринимают адростерон как неприятный и отталкивающий запах. Видимо, этот запах сигнализирует им о наличии рядом соперника. Женщины, вдыхавшие через нос это вещество, выражали схожее отношение, за одним важным исключением: в середине цикла они оценивали этот запах положительно.

Эксперимент 1998 года (с двойным слепым контролем эффекта плацебо) показал, что синтетический андростерон положительно влияет на социально-сексуальное поведение мужчин: у тех, кто пользовался феромоном, обнаружилось значимое увеличение числа половых сношений, и они чаще спали со своими романтическими партнершами. Они также больше занимались петтингом, целовались, испытывали большее чувство близости и чаще ходили на свидания. Однако частота их мастурбаций значимо не менялась. Таким образом, можно предположить, что синтетические феромоны усиливают исключительно социальный аспект сексуального поведения – то есть привлечение противоположного пола.

Женские феромоны копулины – являются смесью влагалищных кислот. Исследования показали, что у мужчин под действием копулинов происходит выброс тестостерона. Копулины выполняют роль симметричную андростерону – привлекают самца к самке, готовой к спариванию. Характерным является то, что, пик секреции копулинов в женском организме приходится именно на период овуляции.

10. Либидо: адрогены (тестостерон)

Андрогены – это общее название мужских половых гормонов . Не смотря на то, что гормоны "мужские" – они вырабатываются половыми железами и корой надпочечников как у мужчин, так и у женщин. Самый важный представитель андрогенов – это тестостерон.

Андрогены отвечают за возбудимость психосексуальных центров нервной системы. Они играют ключевую роль в формировании либидо (полового влечения) – как у мужчин, так и у женщин. Предполагается, что андрогены усиливают влечение путем повышения чувствительности определенных центров в лимбической системе и гипоталамусе, а также посредством повышения общей активности организма вследствие стимулирующего влияния андрогенов на обмен веществ. Это подтверждается тем, что препараты тестостерона являются весьма эффективными лекарственными средствами для повышения либидо.

Имеются данные, что тестостерон повышает агрессивность и чувствительность эрогенных зон. Также прослежена четкая связь между содержанием тестостерона и частотой и выраженностью ночных эрекций. Считается, что андрогены усиливают эрекцию полового члена у мужчин и эрекцию клитора у женщин, а также влияют на интенсивность оргастических переживаний.

Кроме этого, андрогены отвечают за развитие мужских вторичных половых признаков: огрубение голоса, рост волос на лице по мужскому типу, облысение, отложение жира по мужскому типу – на животе, увеличение мышечной массы и силы. Поэтому женщины кавказских народов, отличающиеся мужской растительностью на лице, имеют повышенное либидо по сравнению с европеоидками. Однако, избыточная концентрация андрогенов в женском организме чревата осложнениями беременности.

11. Женственность: эстрогены (эстрадиол)

Эстрогены – общее название женских половых гормонов , производимых в основном половыми железами у женщин. В небольших количествах эстрогены производятся также яичками у мужчин и корой надпочечников у обоих полов. Наиболее характерный эстроген –эстрадиол.

Эстрогены оказывают сильное феменизирующее воздействие на организм : они стимулируют увеличение молочных желез, формирование характерной женской формы таза, отложение жира по женскому типу – на бёдрах). Секреция женских феромонов напрямую зависит от уровня эстрогенов.

Забавно, что светлые волосы являются более высоким показателем концентрации эстрогенов в крови . А высокий уровень эстрогенов – большое количество феромонов. Видимо, поэтому многим мужчинам нравятся блондинки. После рождения у блондинки первого ребенка ее волосы темнеют, поскольку уровень эстрогена в крови падает.

И эстрогены и андрогены тормозят развитие сердечно сосудистых заболеваний остеоропоза. Только эстрогены лучше справляются с сердечно-сосудистыми болезнями, а андрогены – укрепляют кости. В результате чего, риск развития сердечно-сосудистых заболеваний у мужчин выше, зато кости (особенно в старости) – крепче.

Эстрогены обладают успокаивающим и улучшающим память действием. В 1986 – 1990 годах было установлено, что повышение уровня эстрогенов способствует блокировке обратного захвата серотонина – и тем самым повышает настроение и общее самочувствие. Считается что именно чрезвычайно низкий уровень эстрадиола – является причиной депрессий в состоянии менопаузы . Некоторые исследователи считают, что эстрогены наряду с тестостероном повышают уровень полового влечения у женщин.

12. Подготовка к зачатию: прогестины (прогестерон)

Прогестины, и в частности прогестерон – исключительно женские половые гормоны. Основная их функци – обеспечение возможности наступления , а затем – поддержание беременности.

Если пик эстрогенов приходится на овуляцию (это повышает половое влечение, уровень феромонов и увеличивает вероятность полового акта, необходимого для зачатия) – то наибольший уровень прогестерона приходится на вторую стадию цикла – идёт подготовка организма к возможной беременности.

На данный момент существует несколько теорий о причинах возникновения предменструального синдрома.

Обычно, симптомы ПМС связывают с резким уменьшением количества прогестерона на фоне существенно возросшей концентрации эстрогенов . Прогестерон обладает обезболивающим действием, а избыток эстрогенов приводит к задержке жидкости и солей натрия в межклеточном пространстве. Именно с чрезмерной гидратацией организма и его солевой интоксикацией и связано явление ПМС. Характер симптомов определяется заинтересованностью тканей, где развивается отек (мозг – головная боль, кишечник – вздутие живота,тошнота и т.д.).

Кстати: доказано, что уровень прогестерона повышается в организме женщины при одном взгляде на ребенк а. Младенческая схема, запускающая женское родительское поведение, таким образом, имеет гормональную базу. Пухлое тельце, коротенькие ножки и ручки, большая голова и большие глаза стимулирует мощный выброс прогестерона у женщины. Ничего подобного при контакте с младенцами у мужчин не происходит.

Предрасположенность к гормональному ответу на младенческую схему у женщин столь сильна, что механизм этот запускается даже тогда, когда женщина видит котенка, щенка или просто игрушечного плюшевого мишку.

Именно особенностями женского восприятия, связанными с врожденными материнскими инстинктами объясняется тот факт, что многие девушки и молодые женщины приходят в восторг от мягких плюшевых игрушек с пропорциями младенческого тела, тогда как длинные и тощие игрушки не вызывают у них никакой положительной реакции.

У мужчин прогестерон не вырабатываетс я, и им просто непонятны взрывы умиления, которые взрослая женщина, исторгает при виде маленькой плюшевой зверушки.

13. Материнский инстинкт: пролактин

Пролактин – один из гормонов гипофиза. Основная функция пролактина в женском организме – обеспечение грудного вскармливания . Пролактин обеспечивает развитие молочных желез и выработку молока. Секреция пролактина существенно увеличивается во время беременности и особенно во время лактации . В существенно меньших количествах пролактин вырабатывается и у мужчин.

Один из побочных эффектов пролактина – он тормозит механизм полового возбуждения , как у мужчин, так и у женщин. Причём независимо от содержания тестостерона в крови. Именно поэтому во время лактации половое влечение у женщин зачастую отсутствует.

Именно выброс пролактина во время оргазма – виноват в следующем сразу после оргазма половом охлаждении. В обычных условиях 60 участникам эксперимента в возрасте от 22 лет до 31 года в среднем после оргазма требовался перерыв в 19 минут. Однако после приема препарата, подавляющего пролактин – они получали по нескольку оргазмов за сравнительно короткое время.

Достоверно известно, что пролактин стимулирует развитие материнской привязанности . Лабораторные макаки со сниженным уровнем пролактина больше уединяются и меньше времени проводят в телесном контакте.

Считается, что секреция пролактина повышается также при стрессе, депрессии, боли. Возможно, этот механизм носит эволюционный характер, позволяющий снизить вероятность зачатия в неподходящий период.

Однако, не смотря на повышенную выработку пролактина, в стрессовой ситуации самки большинства млекопитающих испытывают затруднения с грудным вскармливанием . Дело в том, что когда детеныш берет сосок в рот, эта механическая стимуляция побуждает гипоталамус запускать выделение другого гормона гипофиза – окситоцина. Уровень его в крови повышается, давление в молочной железе резко возрастает, и молоко начинает поступать в рот детеныша. Происходит это очень быстро: достаточно детенышу пососать мать несколько секунд, чтобы началось обильное отделение молока.

Выделяющийся при стрессе адреналин подавляет окситоцин, и останавливает истечение молока из груди в трудные моменты. Возможно, этот механизм носит эволюционный характер: когда первобытная мать и ее дитя убегали от дикого зверя, прекращение притока молока было ей на пользу, пока она бежала. Как только она достигала безопасного укрытия и успокаивалась, приток молока возобновлялся, и она прикладывала ребенка к груди.

14. Опьянение: этанол

К сожалению, нельзя ни съесть, ни даже ввести себе внутривенно – ни серотонин, ни дофамин . Они должны вырабатываться внутри головного мозга. Будучи введенными извне, эти вещества не способны преодолеть гематоэнцефалический барьер, защищающий мозг от поступления чужеродных веществ.

Зато гематоэнцефалический барьер замечательно преодолевают никотин, опиаты, и конечно же алкоголь .

В отличие от наркотиков, имеющих к соответствующим рецепторам высокое сродство (например, наркотики опийной группы) молекулы этанола не воздействуют непосредственно на рецепторы, а пропитывают липидный слой мембраны нейрона, разжижают её, вызывая процесс флюидизации. В разрыхлённой мембране рецептор утрачивает опору, его конформация изменяется и возникает ощущение опьянения.

Прием этанола усиливает оборот серотонина. Повышение проницаемости мембран-везикул способствует утечке медиатора в пресинаптическую щель и реализации его эффекта. Оказав действие, он интенсивно расщепляется до 5-оксииндолуксусной кислоты. Уменьшение концентрации серотонина в гипоталамусе служит фактором, усиливающим стремление к выпивке.

Однократный прием алкоголя приводит к активизации процессов образования и использования норадреналин а. Содержание его снижается за счет усиления выброса нейромедиатора из везикул и ускоренного его распада. Усилением кругооборота норадреналина в среднем мозге и гипоталамусе объясняется фаза двигательного, вегетативного и эмоционального возбуждения, связанного с употреблением алкоголя. Истощение запасов норадреналина приводит к подавленному состоянию, психической и двигательной заторможенности .

Всем известный синдром алкогольного похмелья вызван интоксикацией организма продуктом окисления этанола – ацетальдегидом , который печень не успевает окончательно расщепить в безвредную уксусную кислоту.

Мы и рассмотрели химические вещества, участвующие в психических процессах человеческого организма. Теперь, видя ту или иную поведенческую реакцию, вы сразу сможете определить, какой химический процесс за ней стоит. Но не забывайте, что кроме химии есть ещё и психология!опубликовано

Введение

Изучив анатомию, морфологию и физиологию гормонов мы уже знаем, что гормоны играют очень большую роль в организме человека и животных. И ходе этой курсовой работы я хочу изучить биохимию гормонов, т.е. подробнее узнать об их химическом составе и о их строении, так же узнать какие химические процессы протекают с участием гормонов в живых организмах.

Гормоны - это то, что делает нас особенным и непохожим на остальных. Они предопределяют наши физические и психические особенности. Вырастем мы высоким или не очень, полным или худым.

Наши гормоны влияют на все аспекты нашей жизни - с момента зачатия и до самой смерти. Они будут влиять на наш рост, половое развитие, формирование наших желаний, на обмен веществ в организме, на крепость мышц, на остроту ума, поведение, даже на наш сон.

Слово „гормон“ часто вызывает фривольные ассоциации: у кого-то они выделяются в избытке, да ещё и где-то играют. Но о том, как гормоны играют, мы поговорим в другой раз. Сейчас - о том, как они работают.

Эта удивительная управляющая система возникла в ходе эволюции, вероятно, чуть позже многоклеточности и одновременно с кровеносной системой. На самом деле даже одноклеточные существа небезразличны к химическим сигналам, приходящим извне, в том числе от других клеток. Но только у многоклеточных могла появиться изощрённая многоуровневая регуляция, известная под названием эндокринной системы.

Она управляет именно теми функциями организма, которые чаще всего бывают неподвластны воле и сознанию, от переработки питательных веществ до влюблённости, от роста рук, ног и туловища до колебаний настроения, от зачатия ребёнка до таинственной деятельности внутренних органов, которые многим своим хозяевам и по именам-то не известны. Вернее, наоборот: эти функции неподвластны воле, потому что управляются не нервной, а эндокринной системой. Специальные клетки в железах и тканях вырабатывают гормоны (от греч. hormamo - приводить в движение, побуждать). Эти вещества выделяются во внеклеточное пространство, в кровь и лимфу, а с их токами попадают в „мишени“ - органы и клетки и производят нужные эффекты. Примечательно, что они работают в очень низких концентрациях - до 10–11 моль/л.

Гормоны (от греч. hormao – привожу в движение, побуждаю) – биологически активные вещества, которые вырабатываются железами внутренней секреции и выделяются непосредственно в кровь, лимфу или ликвор. (Кононский). Они обладают строго специфическим и избирательным действием, способные повышать или понижать уровень жизнедеятельности организма.

Выделяемые гормоны из эндокринных желез отличаются от других биологически активных веществ рядом свойств:

1. Действие гормонов носит дистантный характер, иными словами, органы, на которые гормоны действуют, расположены далеко от железы.

2. Действие гормонов строго специфично. Некоторые гормоны действуют лишь на определенные клетки – мишени, другие - на множество различных клеток.

3. Гормоны обладают высокой биологической активностью.

4. Гормоны действуют только на живые клетки.


Химическая природа и классификация гормонов

Гормоны следует классифицировать по трем основным признакам.

1. По химической природе

2. По эффекту (знаку действия) – возбуждающие и тормозящие.

3. По месту действия на органы – мишени или другие железы: 1) эффекторные; 2) тропные.

В настоящее время описано и выделено более полутора сотен гормонов из разных многоклеточных организмов.

По химической природе гормоны делятся на следующие группы: белково-пептидные, производные аминокислот и стероидные гормоны. Первая группа - это гормоны гипоталамуса и гипофиза, поджелудочной и паращитовидной желёз и гормон щитовидной железы кальцитонин. Некоторые гормоны, например фолликулостимулирующий и тиреотропный, представляют собой гликопротеиды - пептидные цепочки, „украшенные“ углеводами. Пептидные и белковые гормоны обычно действуют на внутриклеточные процессы через специфические рецепторы, расположенные на поверхностной мембране клеток-мишеней. Гормонов имеющих белковую или полипептидную природу называют тропинами, так как они оказывают направленное стимулирующее действие на процессы роста и обмена веществ организма и на функцию периферических эндокринных желез. Рассмотрим некоторых гормонов белково-пептидной природы.

Тиреотропный гормон (тиреотропин) представляет собой сложный белок глюкопротеид с молекулярным весом около 10000. Он стимулирует функцию щитовидной железы, активирует ферменты протеазы и тем способствует распаду тиреоглобулина в щитовидной железе. В результате протеолиза освобождаются гормоны щитовидной железы – тироксин и трииодтиронин, которые поступают в кровь и с ней к соответствующим органам и тканям. Тиреотропин способствует накоплению иода в щитовидной железе, при этом в ней увеличивается число клеток и активируется их деятельность.

Тиреотропин выделятся гипофизом непрерывно в небольших количествах. Выделение его регулируется нейросекреторными веществами гипоталамуса.

Фолликулостимулирующий гормон обеспечивает развитие фолликул в яичниках и сперматогенез в семенниках. Представляет собой белок глюкопротеида с молекулярным весом 67000.

Производные аминокислот - это амины, которые синтезируются в мозговом слое надпочечников (адреналин и норадреналин) и в эпифизе (мелатонин), а также иодсодержащие гормоны щитовидной железы трииодтиронин и тироксин (тетраиодтиронин), из аминокислоты тирозина, которая, в свою очередь, синтезируется из незаменимой аминокислоты фенилаланина. К ним относятся гормоны мозгового слоя надпочечников норадреналин и адреналин, и гормоны щитовидной железы – трииодтиронин и тироксин.

Биохимическое изучение щитовидной железы началось с открытия содержания в ней значительных количеств иода (Бауман, 1896). Освальдом (1901) был обнаружен иодсодержащий белок тиреоглобулин. В 1919г. Кендалл при гидролизе тиреоглобулина выделил криссталическое вещество, содержащее около 60% иода. Эту аминокислоту он назвал тироксином (тетраиодтиронин). Образующийся в щитовидной железе тиреоглобулин не поступает в кровь как таковой. Он подвергается сначала ферментативному расщеплению, получившиеся при этом иодсодержащие тироксины и являются продуктами, выделяемыми в кровь. В тканях организма тироксины претерпевают химические превращения, образующиеся при этом продукты, очевидно, и оказывают свое действие на ферментативные системы, локализующиеся в митохондриях. Было найдено, что тироксин распределяется в клетках следующим образом: в клеточном ядре – 47 мг/%, в митохондриях – 34 мг/%, микросомах – 43мг/% и цитоплазме – 163 мг/%.

Гормоны щитовидной железы являются производными тиронина. В 1927г. Харрингтон и Барджер установили структуру тироксина, который можно считать как производное L – тиронина. Тиронин в организме образуется из аминокислоты L - тирозина. 199

Кроме тироксина, в щитовидной железе и плазме крови имеется другое, родственное ему соединение – трииодтиронин.

Корковый и мозговой слой надпочечников млекопитающих секретируют гормоны, различные как по химической природе, так и по физиологическому действию.

Гормоном мозгового слоя является адреналин. Адреналин – это продукт окисления и декарбоксилирования аминокислоты тирозина. Кроме адреналина, мозговой слой надпочечников вырабатывает также норадреналин, отличающийся от адреналина отсутствием в его молекуле метильной группы:

Адреналин и норадреналин вырабатываются различными клетками мозгового слоя. Биосинтез адреналина начинается с окисления фенилаланина, который превращается в тирозин; тирозин под влиянием фермента ДОФА - оксидазы превращается в 3,4-дегидрооксифенилаланин (ДОФА). Последний декарбоксилируется, и образуется амин, и из него норадреналин. Адреналин возникает уже как продукт метилирования норадреналина.

Третья группа как раз и отвечает за легкомысленную репутацию, которую гормоны приобрели в народе: это стероидные гормоны, которые синтезируются в коре надпочечников и в половых железах. Взглянув на их общую формулу, легко догадаться, что их биосинтетический предшественник - холестерин. Стероиды отличаются по количеству атомов углерода в молекуле: С21 - гормоны коры надпочечников и прогестерон, С19 - мужские половые гормоны (андрогены и тестостерон), С18 - женские половые гормоны (эстрогены). Многие гормоны являются членами семейств со сходной структурой, что отражает процесс молекулярной эволюции. Стероидные гормоны растворяются в жирах и легко проникают через клеточные мембраны. Их рецепторы находятся в цитоплазме или ядре клеток-мишеней.

В настоящее время из коры надпочечников выделено в чистом виде несколько десятков стероидов. Многие из них биологически неактивны, кроме таких, как альдостерол, гидрокортизон, кортизон, кортикостероид, 11- дегидрокортикостерон, 11 - дезоксикортикостерон, 17-окси-11-дезоксикортико-стерон и 19 - оксикортикостерон и некоторые другие. Стероиды имеют широкое применение в лечебной практике. Многие из них синтезированы и применяются при лечении болезней крови, ревматизма, бронхиальной астмы и др.

В настоящее время считают, что из перечисленных выше кортикостероидов надпочечники в основном секретируют 17- оксикортикостерон, кортикостерон и альдостерон. Все они имеют тетрациклическую структуру циклопентанпергидрофенантрена. Структурная основа такого циклического типа соединения характерна и для многих других соединений типа стероидов (холестерин, желчные кислоты, провитамин Д, половые гормоны). Многие из таких стероидов содержат 21 атом углерода и могут рассматриваться как производные прегнана или его изомера – аллопрегнана.

Стероиды коры надпочечников различаются наличием или отсутствием карбоксильных и гидроксильных групп, а также двойных связей между четвертым и пятым атомами углерода.

Кортизол (гидрокортизон) наиболее активный из естественных глюкопротеидов, регулирует углеводный, белковый и жировой обмен, вызывает распад лимфоидной ткани и торможение синтеза соединительной ткани.

Кортикостерон не содержит гидроксильной группы у семнадцатого атома углерода, и действие его отличается от действия гидрокортизона. Он не обладает антивоспалительным действием, почти не действует на лимфоидную ткань и не эффективен при заболеваниях, при которых с успехом используется гидрокортизон. У различных видов животных секретируется неодинаковое количество этих гормонов.

К стероидным гормонам также относятся половые гормоны. Это стероиды андрогенной (мужские) и эстрогенной (женские) природы.

Из природных андрогенных гормонов наиболее эффективными являются тестостерон и андростерон. Андростерон – это кортикостероид, так как у семнадцатого атома углерода находится кетогруппа. Тестостерон является просто стероидом. Он по своему строению близок к полициклическому углеводороду андростану. Андрогены отличаются от кортикостероидов, содержащих двадцать один атом углерода, отсутствием боковой цепи у семнадцатого атома углерода.

Тестостерон отличается от андростана тем, что имеет двойную связь в положении четыре и пять, кетогруппу в положении три и гидроксильную группу в положении семнадцать. В организме он расщепляется, и в ходе его распада наряду с другими метаболитами образуется андростерон.

Мужские половые гормоны является анаболическими гормонами, они стимулируют синтез и накопление белка в мышцах, наиболее выражено это в молодом возрасте. У андростерона проявляется только половое действие, но нет анаболического.

Андрогены являются синергистами (усиливают действие) некоторых других гормонов (например, кортикостероидов, гормона роста и других). В медицинской практике, животноводстве при импотенции и проявлениях недостаточности мужских половых желез применяется препарат метилтестостерон. Он отличается от тестостерона тем, что содержит метильную группу у семнадцатого атома углерода. Искусственно синтезируемый метилтестостеронв несколько раз активнее природного тестостерона.

Женские половые гормоны, или эстрогены, образуются в фолликулах яичников, в желтом теле и во время беременности в плаценте. Они являются производными эстрана, состоят из восемнадцати атомов углерода и отличаются от циклопентанопергидрофенантрена тем, что содержат только одну метильную группу тринадцатого атома углерода. Свойствами женских половых гормонов - вызывание течки у животных и разрастание слизистой оболочки матки – обладают несколько производных эстрана. Наиболее эффективными из них являются: эстрадиол, эстрон (Фолликул) и эстриол (яичник женщины секретирует примерно 1 мг эстрадиола за сутки).


Механизм действия гормонов. Роль циклазной системы в механизме действия гормонов

По механизму действия гормоны делят на два основные типа. Первый – это белковые и пептидные гормоны, катехоламины и гормоноиды. Их молекула, подойдя к клетке- мишени, соединяется с молекулами белковых рецепторов наружной плазматической мембраны, затем с помощью медиаторов (ц АМФ, ц ГМФ, простагландинов, Са2+) оказывает влияние на ферментные системы клетки- мишени и на обмен веществ в ней. К гормонам второго типа относят стероидные и часть тиреоидных гормонов. Их молекула легко проникает в глубь клетки- мишени через поры мембраны; взаимодействует с молекулами гликопротеидных рецепторов, локализированных в цитозоле, митохондриях на ядерной мембране, оказывая воздействие на весь клеточный метаболизм, и в первую очередь процессы транскрипции.


Механизмы действия гормонов на клетки-мишени

В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.

Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют вторыми посредниками. Молекулы гормонов очень разнообразны по форме, а "вторые посредники" - нет.

Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов?

Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок - кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы - ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.

Разберем более подробно механизмы действия гормонов и внутриклеточных посредников.

Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:

аденилатциклазная (или гуанилатциклазная) системы;

фосфоинозитидный механизм.

Прежде чем выяснить роль циклазной системы в механизме действия гормонов, рассмотрим определение этой системы. Система циклазная – это система, состоящая из содержащихся в клетке аденозинциклофосфата, аденилатциклазы и фосфодиэстеразы, регулирующая проницаемость клеточных мембран, участвует в регуляции многих обменных процессов живой клетки, опосредует действие некоторых гормонов. То есть роль циклазной системы заключается в том, что они являются вторыми посредниками в механизме действия гормонов.

Система «аденилатциклаза - цАМФ». Мембраны фермент аденилатциклаза может находиться в двух формах - активированной и неактивированной. Активация аденилатциклазы происходит под влиянием гормон-рецепторного комплекса, образование которого приводит к связыванию гуанилового нуклеотида (ГТФ) с особым регуляторным стимулирующим белком (GS-белок), после чего GS-белок вызывает присоединение магния к аденилатциклазе и ее активацию. Так действуют активизирующие аденилатциклазу гормоны глюкагон, тиреотропин, паратирин, вазопрессин, гонадотропин и др. Некоторые гормоны, напротив, подавляют аденилатциклазу (соматостатин, ангиотензин-П и др.).

Под влиянием аденилатциклазы из АТФ синтезируется цАМФ, вызывающий активацию протеинкиназ в цитоплазме клетки, обеспечивающих фосфорилирование многочисленных внутриклеточных белков. Это изменяет проницаемость мембран, т.е. вызывает типичные для гормона метаболические и, соответственно, функциональные сдвиги. Внутриклеточные эффекты цАМФ проявляются также во влиянии на процессы пролиферации, дифференцировки, на доступность мембранных рецепторных белков молекулам гормонов.

Система «гуанилатциклаза - цГМФ». Активация мембранной гуанилатциклазы происходит не под непосредственным влиянием гормон-рецепторного комплекса, а опосредованно через ионизированный кальций и оксидантные системы мембран. Так реализуют свои эффекты натрийуретический гормон предсердий - атриопептид, тканевой гормон сосудистой стенки. В большинстве тканей биохимические и физиологические эффекты цАМФ и цГМФ противоположны. Примерами могут служить стимуляция сокращений сердца под влиянием цАМФ и торможение их цГМФ, стимуляция сокращений гладких мышц кишечника цГМФ и подавление цАМФ.

Кроме аденилатциклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат - это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы "С", который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30 % состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс "Са+2-кальмодулин" становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса "Са+2-кальмодулин" на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

Таким образом, в роли "вторых посредников" для передачи сигналов от гормонов в клетках-мишенях могут быть:

циклические нуклеотиды (ц-АМФ и ц-ГМФ);

комплекс "Са-кальмодулин";

диацилглицерин;

инозитолтрифосфат.

Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты:

одним из этапов передачи сигнала является фосфорилирование белков;

прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, - существуют механизмы отрицательной обратной связи.

Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия. Гормоны являются высокоспецифичными веществами по отношению к клеткам-мишеням и обладают очень высокой биологической активностью.


Строение, биороль простагландинов и тромбоксанов

Простагландины- биологически активные вещества, представляющие собой производные полиненасыщенных жирных кислот, молекула которых содержит 20 углеродных атомов. Биологическое действие простагландина многообразно; один из основных биологических эффектов простагландина заключается в их выраженном действии на тонус гладкой мускулатуры различных органов. Простагландины снижают выделение желудочного сока и уменьшают его кислотность, являются медиаторами воспаления и аллергических реакций, принимают участие в деятельности различных звеньев репродуктивной системы, играют важную роль в регуляции деятельности почек, оказывают влияние на различные эндокринные железы. Нарушение биосинтеза простагландина является причиной развития тяжелых патологических состояний. Синтетические и полусинтетические простагландины используют в качестве лекарственных средств.

В середине 30-х гг. 20в. шведский ученый Эйлер (V.Euler) обнаружил в экстракте из предстательной железы (простаты) биологически активные вещества, которые он назвал простагландинами, полагая, что они вырабатываются только в предстательной железе. Позже было установлено, что простагландин образуются практически во всех органах и тканях. В 1962г. была расшифрована химическая структура простагландинов. Оказалось, что углеродный скелет молекулы простагландина имеет вид пятичленного цикла и двух боковых цепей. Простагландины можно рассматривать как производные так называемой простановой кислоты- соединения, не существующего в природе, но полученного синтетически.

Известно около 20 различных простагландинов. В зависимости от строения их делят на несколько типов, обозначаемых буквами латинского алфавита: А, В, С, D, Е, F и т.д. Простагландины каждого типа разделяют на 1-ю, 2-ю и 3-ю серии в зависимости от числа двойных связей в боковых цепях молекулы. С учетом типа и серии простагландинов обозначают ПГЕ2 (PGE2), ПГД1 (PGD1), ПГН2 (PGH2) и т.д.

В 70-х гг. 20в. было обнаружено, что в организме человека и животных образуются и другие биологически активные производные полиненасыщенных жирных кислот, в тромбоцитах- тромбоксаны (ТХ). Тромбоксаны были обнаружены группой шведских биохимиков во главе с Б.Самуэльсонам. От простагландинов тромбоксаны отличаются наличием в молекуле вместо пятичленного цикла шестичленного оксанового кольца, в зависимости от структуры которого различают тромбоксаны А и В (ТХА и ТХВ). Тромбоксаны обоих типов, в свою очередь, делят на 1-ю, 2-ю и 3-ю серии по тому же принципу, что и простагландины.

В организме человека и животных простагландины и тромбоксаны образуются из общего предшественника- незаменимых полиненасыщенных жирных кислот с соответствующим числом углеродных атомов и двойных связей в молекулах, в т.ч. из линолевой и арахидоновой кислот. Фактором, лимитирующим скорость биосинтеза простагладина является общее количество (пул) свободных жирных кислот, поэтому вещества, влияющие на гидролитическое расщепление триглицеридов, фосфолипидов и эфиров холестерина, в состав которых входят полиненасыщенные жирные кислоты, могут регулировать интенсивность образования простагландина. Так, катехоламины, брадикинин, ангиотензин II вызывают усиление освобождения жирных кислот в организме, тем самым косвенно стимулируя образование простагландинов. По-видимому, таков же механизм стимуляции биосинтеза простагландинов, тромбоксанов при ишемии или механическом воздействии на клетки. Кортикостероидные гормоны, напротив, подавляют биосинтез простагландина и тромбоксанов, т.к. они ингибируют освобождение жирных кислот. Некоторые соединения влияют на образование отдельных типов простагландинов и тромбоксанов, например перекиси жирных кислот специфически угнетают биосинтез простагландина I2-(простагландина I2 или простациклина), а имидазол- образование тромбоксана А2. Ряд лекарственных средств оказывает выраженное действие на образование простагландинов и тромбоксанов изменяя не только их общее количество, но и соотношение между отдельными типами и сериями. например, лекарственные средства, обладающие противовоспалительным действием,- салицилаты, индометацин (метиндол), бруфен и др.- ингибируют циклооксигеназу, катализирующую первый этап биосинтеза простгландина. Это приводит к уменьшению образования простагландинов и тромбоксанов.

Простагландины и тромбоксаны являются короткоживущими соединениями. Время полужизни некоторых из них исчисляется секундами. Быстрое разрушение простагландинов обусловливает локальность их эффектов- простагландин действуют главным образом в месте их синтеза. Метаболизм простагландина приводящий к их быстрой инактивации, осуществляется во всех тканях, но особенно активно в легких, печени и почках.

Биологическое действие простагландина многообразно благодаря не только биологической поливалентности индивидуальных простагландинов, но и большому их разнообразию. Простагландины F1 и D2 вызывают сокращение бронхов, а простагландин Е2- их расслабление. Тромбоксан А2сокращает стенки кровеносных сосудов и повышает АД, а простагландин I2 оказывает сосудорасширяющее действие, сопровождающееся гипотензивным эффектом. Антагонистические взаимоотношения между тромбоксаном А2 и простагландином I2 проявляются и при их действии на систему свертывания крови: тромбоксан А2 является мощным природным индуктором агрегации тромбоцитов, а простагландин I2, синтезирующийся в стенках кровеносных сосудов, выполняет в организме человека и животных роль ингибитора агрегации тромбоцитов. Соотношение простагландина I2 и тромбоксана А2 имеет важное значение для нормального функционирования сердечно-сосудистой системы.

Простагландины необходимы для процесса овуляции; они влияют на продвижение яйцеклетки и подвижность сперматозоидов, на сократительную деятельность матки, а также необходимы для нормальной родовой деятельности: слабую родовую активность и перенашивание беременности связывают с недостатком П., а повышенное образование П. может стать причиной самопроизвольных абортов и преждевременных родов. У новорожденных П. регулируют закрытие сосудов пуповины и артериального протока.

Простагландины помимо воздействия на специфические рецепторы способны непосредственно влиять на функциональные структуры клетки. В качестве лекарственных средств простагландины используются для вызывания родов, возбуждения и стимуляции родовой деятельности, прерывания беременности. В терапевтических дозах простагландины не оказывают неблагоприятного влияния на мать и плод. Чувствительность матки к введению простагландина различна на разных сроках беременности; на очень ранних и на поздних сроках стимулирующий эффект вызывается легко, а в промежутке между ними на введение препаратов простагландина миометрий реагирует слабо. Противопоказаниями к использованию простагландина с целью вызывания аборта, возбуждения и стимуляции родовой деятельности являются тяжелые соматические заболевания, аллергические реакции на препараты простагландинов, бронхиальная астма, эпилепсия, рубец на матке.


Регуляция секреции гормонов

Гормональная регуляция, регуляция жизнедеятельности организма животных и человека, осуществляемая при участии поступающих в кровь гормонов; одна из систем саморегуляции функций, тесно связанная с нервной и гуморальной системами регуляции и координации функций.

Одним из важнейших биологических процессов является регуляция секреции гормонов, обеспечивающая их образование, выделение из клеток и поступление в циркуляцию в количестве, необходимом для поддержания процессов метаболизма и других функций тканей и органов. Составными частями этой регулирующей системы являются гуморальные факторы, к которым надо отнести продукты метаболизма и гормоны, нейро-гормональные и нервные факторы.

Можно привести ряд примеров влияния продуктов метаболизма на различные этапы секреции гормонов. Так, примером гуморальных регуляций является выделение инсулина из бета-клеток островков поджелудочной железы во внеклеточное пространство и циркуляцию, при повышении уровня гликемии, тимуляторами этой секреции являются также аминокислоты, оординированно с процессом выделения инсулина происходит овышение его биосинтеза. Снижение уровня сахара крови способствует понижению секреции инсулина, повышению секреции и поступлению в циркуляцию его гормональных антагонистов - глюкагона, вырабатываемого альфа-клетками островков поджелудочной железы, гормона роста, гидрокортизона, адреналина и медиатора норадреналина. Это строго координированное взаимодействие ряда гормонов в итоге сложных метаболических процессов обеспечивает сохранение физиологического уровня сахара крови и метаболизма глюкозы.

Кроме регуляции секреции гормонов в ответ на повышенный к ним запрос, существенное значение имеет высвобождение гормонов из их связи с белками. Изучены специфические белки, связывающие в плазме крови инсулин, тироксин, гормон роста, прогестерон, гидрокортизон, кортикостероп и другие гормоны. Гормоны и протеины связаны нековалентными связями, обладающими сравнительно низкой энергией, поэтому эти комплексы легко разрушаются, освобождая гормон. Комплексирование с белками дает возможность сохранять часть гормона в неактивной форме. Кроме того, эта связь защищает гормон от действия химических и энзи-матических факторов. К представлению, что связанные с белками гормоны являются одной из транспортных форм в циркуляции и обеспечивают их резервирование, добавились другие факты: важным компонентом биологического значения этих комплексов является возможность быстрого высвобождения из них свободных, т. е. активных, гормонов.

Регуляция секреции гормонов осуществляется несколькими связанными между собой механизмами. Их можно проиллюстрировать на примере кортизола, основного глюкокортикоидного гормона надпочечников. Его продукция регулируется по механизму обратной связи, который действует на уровне гипоталамуса. Когда в крови снижается уровень кортизола, гипоталамус секретирует кортиколиберин – фактор, стимулирующий секрецию гипофизом кортикотропина (АКТГ). Повышение уровня АКТГ, в свою очередь, стимулирует секрецию кортизола в надпочечниках, и в результате содержание кортизола в крови возрастает. Повышенный уровень кортизола подавляет затем по механизму обратной связи выделение кортиколиберина – и содержание кортизола в крови снова снижается. Секреция кортизола регулируется не только механизмом обратной связи. Так, например, стресс вызывает освобождение кортиколиберина, а соответственно и всю серию реакций, повышающих секрецию кортизола. Кроме того, секреция кортизола подчиняется суточному ритму; она очень высока при пробуждении, но постепенно снижается до минимального уровня во время сна. К механизмам контроля относится также скорость метаболизма гормона и утраты им активности. Аналогичные системы регуляции действуют и в отношении других гормонов.

Самое важное значение имеет в регуляции секреции гормонов центральная нервная система. Одной из важнейщих областей ЦНС, координирующей и контролирующей функции эндокринных желез, является гипоталамус, где локализуются нейросекреторные ядра и центры, принимающие участие в регуляции синтеза и секреции гормонов аденогипофиза. Гипоталамо-гипофизарная регуляция осуществляется механизмами, функционирующими по принципу обратной связи, в которых четко выделяются различные уровни взаимодействия

Рис 2. Уровни функционирования обратной связи.

Под “длинной” цепью обратной связи подразумевается взаимодействие периферической эндокринной железы с гипофизарными и гипоталамическими центрами (не исключено, что и с супрагипоталамическими и другими областями ЦНС) посредством влияния на указанные центры изменяющейся концентрации гормонов в циркулирующей крови.

Под “короткой” цепью обратной связи понимают такое взаимодействие, когда повышение гипофизарного тропного гормона (например, АКТГ) модулирует и модифицирует секрецию и высвобождение гипофизотропного гормона (в данном случае кортиколиберина).

“Ультракороткая” цепь обратной связи – вид взаимодействия в пределах гипоталамуса, когда высвобождение одного гипофизотропного гормона влияет на процессы секреции и высвобождения другого гипофизотропного гормона. Этот вид обратной связи имеет место в любой эндокринной железе. Так, высвобождение окситоцина или вазопрессина через аксоны этих нейронов и посредством межклеточных взаимодействий (от клетки к клетке) модифицирует активность нейронов, продуцирующих эти гормоны. Другой пример, высвобождение пролактина и его диффузия в межваскулярные пространства приводит к влиянию на соседние лактотрофы с последующим угнетением секреции пролактина.

“Длинная” и “короткая” цепи обратной связи функционируют как системы “закрытого” типа, т.е. являются саморегулирующими системами. Однако они отвечают на внутренние и внешние сигналы, изменяя на короткое время принцип саморегуляции (например, при стрессе и др.). Наряду с этим на указанные системы влияют механизмы, поддерживающие биологический циркадный ритм, связанный со сменой дня и ночи. Циркадный ритм представляет собой компонент системы, регулирующий гомеостаз организма и позволяющий адаптироваться к изменяющимся условиям внешней среды. Информация о ритме день-ночь передается в ЦНС с сетчатки глаза на супрахиазматические ядра, которые вместе с эпифизом образуют центральный циркадный механизм – ”биологические часы”. Помимо механизма день-ночь, в деятельности этих “часов” принимают участие другие регуляторы (изменение температуры тела, состояние отдыха, сна и др.).


Гормональная регуляция углеводного, липидного, белкового и водно- солевого обмена

Основные энергетические ресурсы живого организма - углеводы и жиры обладают высоким запасом потенциальной энергии, легко извлекаемой из них в клетках с помощью ферментных катаболических превращений. Энергия, высвобождаемая в процессе биологического окисления продуктов углеводного и жирового обменов, а также гликолиза, превращается в значительной степени в химическую энергию фосфатных связей синтезируемого АТФ. Аккумулированная же в АТФ химическая энергия макроэргических связей, в свою очередь, расходуется на разного вида клеточную работу - создание и поддержание электрохимических градиентов, сокращение мышц, секреторные и некоторые транспортные процессы, биосинтез белка, жирных кислот и т.д. Помимо «топливной» функции углеводы и жиры наряду с белками выполняют роль важных поставщиков строительных, пластических материалов, входящих в основные структуры клетки, - нуклеиновых кислот, простых белков, гликопротеинов, ряда липидов и т.д. Синтезируемая благодаря распаду углеводов и жиров АТФ не только обеспечивает клетки необходимой для работы энергией, но и является источником образования цАМФ, а также участвует в регуляции активности многих ферментов, состояния структурных белков, обеспечивая их фосфорилирование.

Углеводными и липидными субстратами, непосредственно утилизируемыми клетками, являются моносахариды (прежде всего глюкоза) и неэстерифицированные жирные кислоты (НЭЖК), а также в некоторых тканях кетоновые тела. Их источниками служат пищевые продукты, всасываемые из кишечника, депонированные в органах в форме гликогена углеводов и в форме нейтральных жиров липиды, а также неуглеводные предшественники, в основном аминокислоты и глицерин, образующие углеводы (глюконеогенез). К депонирующим органам у позвоночных относятся печень и жировая (адипозная) ткань, к органам глюконеогенеза - печень и почки. У насекомых депонирующим органом является жировое тело. Кроме этого, источниками глюкозы и НЭЖК могут быть и некоторые запасные или другие продукты, хранящиеся или образующиеся в работающей клетке. Разные пути и стадии углеводного и жирового обменов взаимосвязаны многочисленными взаимовлияниями. Направление и интенсивность течения этих обменных процессов находятся в зависимости от ряда внешних и внутренних факторов. К ним относятся, в частности, количество и качество потребляемой пищи и ритмы ее поступления в организм, уровень мышечной и нервной деятельности и т.д.

Животный организм адаптируется к характеру пищевого режима, к нервной или мышечной нагрузке с помощью сложного комплекса координирующих механизмов. Так, контроль течения различных реакций углеводного и липидного обменов осуществляется на уровне клетки концентрациями соответствующих субстратов и ферментов, а также степенью накопления продуктов той или иной реакции. Эти контролирующие механизмы относятся к механизмам саморегуляции и реализуются как в одноклеточных, так и в многоклеточных организмах. У последних регуляция утилизации углеводов и жиров может происходить на уровне межклеточных взаимодействий. В частности, оба вида обмена реципрокно взаимоконтролируются: НЭЖК в мышцах тормозят распад глюкозы, продукты же распада глюкозы в жировой ткани тормозят образование НЭЖК. У наиболее высокоорганизованных животных появляется особый межклеточный механизм регуляции межуточного обмена, определяемый возникновением в процессе эволюции эндокринной системы, имеющей первостепенное значение в контроле метаболических процессов целого организма.

Среди гормонов, участвующих в регуляции жирового и углеводного обменов у позвоночных, центральное место занимают следующие: гормоны желудочно-кишечного тракта, контролирующие переваривание пищи и всасывание продуктов пищеварения в кровь; инсулин и глюкагон - специфические регуляторы межуточного обмена углеводов и липидов; СТГ и функционально связанные с ним «соматомедины» и СИФ, глюкокортикоиды, АКТГ и адреналин - факторы неспецифической адаптациии. Следует отметить, что многие названные гормоны принимают также непосредственное участие и в регуляции белкового обмена (см. гл. 9). Скорость секреции упомянутых гормонов и реализация их эффектов на ткани взаимосвязаны.

Мы не можем специально останавливаться на функционировании гормональных факторов желудочно-кишечного тракта, секретируемых в нервно-гуморальную фазу сокоотделения. Их главные эффекты хорошо известны из курса общей физиологии человека и животных и, кроме того, о них уже достаточно полно упоминалось в гл. 3. Более подробно остановимся на эндокринной регуляции межуточного метаболизма углеводов и жиров.

Гормоны и регуляция межуточного углеводного обмена. Интегральным показателем баланса обмена углеводов в организме позвоночных является концентрация глюкозы в крови. Этот показатель стабилен и составляет у млекопитающих примерно 100 мг% (5 ммоль/л). Его отклонения в норме обычно не превышают ±30%. Уровень глюкозы в крови зависит, с одной стороны, от притока моносахарида в кровь преимущественно из кишечника, печени и почек и, с другой - от его оттока в работающие и депонирующие ткани (рис. 2).

Приток глюкозы из печени и почек определяется соотношением активностей гликогенфосфорилазной и гликогенсинтетазной реакции в печени, соотношением интенсивности распада глюкозы и интенсивности глюконеогенеза в печени и отчасти в почке. Поступление глюкозы в кровь прямо коррелирует с уровнями фосфорилазной реакции и процессов глюконеогенеза. Отток глюкозы из крови в ткани находится в прямой зависимости от скорости ее транспорта в мышечные, адипозные и лимфоидные клетки, мембраны которых создают барьер для проникновения в них глюкозы (напомним, что мембраны клеток печени, мозга и почек легко проницаемы для моносахарида); метаболической утилизации глюкозы, в свою очередь зависимой от проницаемости к ней мембран и от активности ключевых ферментов ее распада; превращения глюкозы в гликоген в печеночных клетках (Левин и др., 1955; Ньюсхолм, Рэндл, 1964; Фоа, 1972). Все эти процессы, сопряженные с транспортом и метаболизмом глюкозы, непосредственно контролируются комплексом гормональных факторов.

Рис.2. Пути поддержания динамического баланса глюкозы в крови Мембраны мышечных и адипозных клеток имеют "барьер" для транспорта глюкозы; Гл-б-ф - глюкозо-б-фосфат

Гормональные регуляторы углеводного обмена по действию на общее направление обмена и уровень гликемии могут быть условно разделены на два типа. Первый тип гормонов стимулирует утилизацию глюкозы тканями и ее депонирование в форме гликогена, но тормозит глюконеогенез, и, следовательно, вызывает снижение концентрации глюкозы в крови. Гормоном такого типа действия является инсулин. Второй тип гормонов стимулирует распад гликогена и глюконеогенез, а следовательно, вызывает повышение содержания глюкозы в крови. К гормонам этого типа относятся глюкагон (а также секретин и ВИП) и адреналин. Гормоны третьего типа стимулируют глюконеогенез в печени, тормозят утилизацию глюкозы различными клетками и, хотя усиливают образование гликогена гепатоцитами, в результате преобладания первых двух эффектов, как правило, также повышают уровень глюкозы в крови. К гормонам данного типа можно отнести глюкокортикоиды и СТГ - «соматомедины». Вместе с тем, обладая однонаправленным действием на процессы глюконеогенеза, синтеза гликогена и гликолиза, глюкокортикоиды и СТГ - «соматомедины» по-разному влияют на проницаемость мембран клеток мышечной и адипозной ткани к глюкозе.

По направленности действия на концентрацию глюкозы в крови инсулин является гипогликемическим гормоном (гормон «покоя и насыщения»), гормоны же второго и третьего типов - гипергликемическими (гормоны «стресса и голодания»)

Рис 3. Гормональная регуляция углеводного гомеостаза: сплошными стрелками обозначена стимуляция эффекта, пунктирными - торможение

Инсулин можно назвать гормоном усвоения и депонирования углеводов. Одной из причин усиления утилизации глюкозы в тканях является стимуляция гликолиза. Она осуществляется, возможно, на уровне активации ключевых ферментов гликолиза гексокиназы, особенно одной из четырех известных ее изоформ - гексокиназы П, и глюкокиназы (Вебер, 1966; Ильин, 1966, 1968). По-видимому, определенную роль в стимуляции катаболизма глюкозы инсулином играет и ускорение пентозофосфатного пути на стадии глюкозо-6-фосфатдегидрогеназной реакции (Лейтес, Лаптева, 1967). Считается, что в стимуляции захвата глюкозы печенью при пищевой гипергликемии под влиянием инсулина важнейшую роль играет гормональная индукция специфического печеночного фермента глюкокиназы, избирательно фосфорилирующего глюкозу при высоких ее концентрациях.

Главная причина стимуляции утилизации глюкозы мышечными и жировыми клетками - прежде всего избирательное повышение проницаемости клеточных мембран к моносахариду (Лунсгаард, 1939; Левин, 1950). Таким путем достигается повышение концентрации субстратов для гексокиназной реакции и пентозофосфатного пути.

Усиление гликолиза под влиянием инсулина в скелетных мышцах и миокарде играет существенную роль в накоплении АТФ и обеспечении работоспособности мышечных клеток. В печени усиление гликолиза, по-видимому, важно не столько для повышения включения пирувата в систему тканевого дыхания, сколько для накопления ацетил-КоА и малонил-КоА как предшественников образования многоатомных жирных кислот, а следовательно, и три-глицеридов (Ньюсхолм, Старт, 1973). Образующийся в процессе гликолиза глицерофосфат также включается в синтез нейтрального жира. Кроме того, и в печени, и особенно в адипозной ткани для повышения уровня липогенеза из глюкозы существенную роль играет стимуляция гормоном глюкозо-б-фосфатдегидрогеназной реакции, приводящей к образованию НАДФН - восстанавливающего кофактора, необходимого для биосинтеза жирных кислот и глицерофосфата. При этом у млекопитающих только 3-5% всасываемой глюкозы превращается в печеночной гликоген, а более 30% накапливается в виде жира, откладываемого в депонирующих органах.

Таким образом, основное направление действия инсулина на гликолиз и пентозофосфатный путь в печени и особенно в жировой клетчатке сводится к обеспечению образования триглицеридов. У млекопитающих и птиц в адипоцитах, а у низших позвоночных в гепатоцитах глюкоза - один из главных источников депонируемых триглицеридов. В данных случаях физиологический смысл гормональной стимуляции утилизации углеводов сводится в значительной мере к стимуляции депонирования липидов. Одновременно с этим инсулин непосредственно влияет на синтез гликогена - депонируемой формы углеводов - не только в печени, но и в мышцах, почке, и, возможно, жировой ткани.

Адреналин по влиянию на углеводный обмен близок к глюкагону, поскольку механизмом медиации их эффектов является аденилатциклазный комплекс (Робизон и др., 1971). Адреналин, как и глюкагон, усиливает распад гликогена и процессы глюконеогенеза. В физиологических концентрациях глюкагон преимущественно рецептируется печенью и адипозной тканью, а адреналин - мышцами (прежде всего миокардом) и жировой тканью. Поэтому для глюкагона в большей, а для адреналина в меньшей степени характерны отставленная во время стимуляция глюконеогенетических процессов. Однако же для адреналина в значительно большей степени, чем для глюкагона, типично повышение гликогенолиза и, по-видимому, вследствие этого гликолиза и дыхания в мышцах. В плане не механизмов, а общего влияния на гликолитические процессы в мышечных клетках адреналин является отчасти синерегистом инсулина, а не глюкагона. Видимо, инсулин и глюкагон в большей мере - гормоны питания, а адреналин - стрессорный гормон.

В настоящее время установлен ряд биохимических механизмов, лежащих в основе действия гормонов на липидный обмен.

Известно, что длительный отрицательный эмоциональный стресс, сопровождающийся увеличением выброса катехоламинов в кровяное русло, может вызвать заметное похудание. Уместно напомнить, что жировая ткань обильно иннервируется волокнами симпатической нервной системы, возбуждение этих волокон сопровождается выделением норадреналина непосредственно в жировую ткань. Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани; в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифи-цированных жирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая – нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ. В свою очередь цАМФ активирует соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т.е. образованию ее активной формы. Следует заметить, что действие глюкагона на липолитическую систему сходно с действием кате-холаминов.

Не подлежит сомнению, что секрет передней доли гипофиза, в частности соматотропный гормон, оказывает влияние на липидный обмен. Гипофункция железы приводит к отложению жира в организме, наступает гипофизарное ожирение. Напротив, повышенная продукция СТГ стимулирует липолиз, и содержание жирных кислот в плазме крови увеличивается. Доказано, что стимуляция липолиза СТГ блокируется ингибиторами синтеза мРНК. Кроме того, известно, что действие СТГ на липолиз характеризуется наличием лаг-фазы продолжительностью около 1 ч, тогда как адреналин стимулирует липолиз почти мгновенно. Иными словами, можно считать, что первичное действие этих двух типов гормонов на липолиз проявляется различными путями. Адреналин стимулирует активность аденилатциклазы, а СТГ индуцирует синтез данного фермента. Конкретный механизм, с помощью которого СТГ избирательно увеличивает синтез аденилатциклазы, пока неизвестен.

Инсулин оказывает противоположное адреналину и глюкагону действие на липолиз и мобилизацию жирных кислот. Недавно было показано, что инсулин стимулирует фосфодиэстеразную активность в жировой ткани. Фосфодиэстераза играет важную роль в поддержании постоянного уровня цАМФ в тканях, поэтому увеличение содержания инсулина должно повышать активность фосфодиэстеразы, что в свою очередь приводит к уменьшению концентрации цАМФ в клетке, а следовательно, и к образованию активной формы липазы.

Несомненно, и другие гормоны, в частности тироксин, половые гормоны, также оказывают влияние на липидный обмен. Например, известно, что удаление половых желез (кастрация) вызывает у животных избыточное отложение жира. Однако сведения, которыми мы располагаем, не дают пока основания с уверенностью говорить о конкретном механизме их действия на обмен липидов.

В гормональной регуляции обмена белков участвуют гормоны щитовидной железы тироксин (Т3) усиливает синтез белков; Высокие концентрации Т3 наоборот, подавляют синтез белка; гормон роста, инсулин тестостерон, эстроген усиливают распад белков, особенно в мышечной и лимфоидной тканях, но стимулируют синтез белков в печени.

Регуляция водно-солевого обмена происходит нервно-гормональным путём. При изменении осмотической концентрации крови возбуждаются специальные чувствительные образования (осморецепторы), информация от которых передаётся в центр, нервную систему, а от неё к задней доле Гипофиза. При повышении осмотической концентрации крови увеличивается выделение антидиуретического гормона, который уменьшает выделение воды с мочой; при избытке воды в организме снижается секреция этого гормона и усиливается её выделение почками. Постоянство объёма жидкостей тела обеспечивается особой системой регуляции, рецепторы которой реагируют на изменение кровенаполнения крупных сосудов, полостей сердца и др.; в результате рефлекторно стимулируется секреция гормонов, под влиянием которых почки изменяют выделение воды и солей натрия из организма. Наиболее важны в регуляции обмена воды гормоны вазопрессин и глюкокортикоиды, натрия - альдостерон и ангиотензин, кальция - Паратиреоидный гормон и кальцитонин.


Заключение

В заключительной части моей курсовой работы, я хочу сказать, что гормоны обладают весьма высокой биологической активностью. Они имеет очень сложную химическую структуру, механизмы действия и огромную значимость в обмене веществ. Одно нарушение функции некоторых эндокринных желез может оказывать влияние, как на функцию других желез, так и на нервную систему. В связи с такой значимостью, в медицине существует терапевтическое использование гормонов. Гормоны использовались первоначально в случаях недостаточности какой-либо из желез внутренней секреции для замещения или восполнения возникшего гормонального дефицита. Первым эффективным гормональным препаратом был экстракт щитовидной железы овцы, примененный в 1891 английским врачом Г.Марри для лечения микседемы. На сегодняшний день гормональная терапия способна восполнить недостаточную секрецию практически любой эндокринной железы; прекрасные результаты дает и заместительная терапия, проводимая после удаления той или иной железы. Гормоны могут использоваться также для стимуляции работы желез. Гонадотропины, например, применяют для стимуляции половых желез, в частности для индукции овуляции.

Кроме заместительной терапии, гормоны и гормоноподобные препараты используются и для других целей. Так, избыточную секрецию андрогена надпочечниками при некоторых заболеваниях подавляют кортизоноподобными препаратами. Другой пример – использование эстрогенов и прогестерона в противозачаточных таблетках для подавления овуляции.

Гормоны могут применяться и как агенты, нейтрализующие действие других медикаментозных средств; при этом исходят из того, что, например, глюкокортикоиды стимулируют катаболические процессы, а андрогены – анаболические. Поэтому на фоне длительного курса глюкокортикоидной терапии (скажем, в случае ревматоидного артрита) нередко дополнительно назначают анаболические средства для снижения или нейтрализации ее катаболического действия.

Часто гормоны применяют как специфические лекарственные средства. Так, адреналин, расслабляющий гладкие мышцы, очень эффективен в случаях приступа бронхиальной астмы. Гормоны используются и в диагностических целях. Например, при исследовании функции коры надпочечников прибегают к ее стимуляции, вводя пациенту АКТГ, а ответ оценивают по содержанию кортикостероидов в моче или плазме.

В настоящее время препараты гормонов начали применяться почти во всех областях медицины. Гастроэнтерологи используют кортизоноподобные гормоны при лечении регионарного энтерита или слизистого колита. Дерматологи лечат угри эстрогенами, а некоторые кожные болезни – глюкокортикоидами; аллергологи применяют АКТГ и глюкокортикоиды при лечении астмы, крапивницы и других аллергических заболеваний. Педиатры прибегают к анаболическим веществам, когда необходимо улучшить аппетит или ускорить рост ребенка, а также к большим дозам эстрогенов, чтобы закрыть эпифизы (растущие части костей) и предотвратить таким образом чрезмерный рост.

При трансплантации органов используют глюкокортикоиды, которые уменьшают шансы отторжения трансплантата. Эстрогены могут ограничивать распространение метастазирующего рака молочной железы у больных в период после менопаузы, а андрогены применяются с той же целью до менопаузы. Урологи используют эстрогены, чтобы затормозить распространение рака предстательной железы.


Литература

1. Ажгихина И.С., Простагландины, М., 1978.

2. Алексахина Н.В., Виноградов А.Д., Биохимия животных, М., 1975. –27с.

3. Афиногенова С.А., Булатов А.А., Биохимия гормонов и гормональной регуляции, М.Мир, 1993. – 384с.

4. Кононский А.И., Биохимия животных, М.Молодая гвардия, 1992. -526с.

5. Марри Р., Греннер Д., Мейес П., Биохимия человека, М.Мир,1993. – 384с.

6. Розен В.Б., Основы эндокринологии, М.Высшая школа, 1984. – 336с.

7. Юдаев Н.А., Биохимия гормонов и гормональной регуляции, М.,1976. -300с.

сообщение на тему гормоны. всмысле кто открыл и др в кратьсе и получил лучший ответ

Ответ от Красавица южная[гуру]
В чём, в чём?

Ответ от Мария [активный]
История
Открыты в 1902 году Старлингом и Бейлиссом.
Назначение
Используются в организме для поддержания его гомеостаза, а также для регуляции многих функций (роста, развития, обмена веществ, реакции на изменения условий среды) .
Рецепторы
Все гормоны реализуют своё воздействие на организм или на отдельные органы и системы при помощи специальных рецепторов к этим гормонам. Рецепторы к гормонам делятся на 3 основных класса:
рецепторы, связанные с ионными каналами в клетке (ионотропные рецепторы)
рецепторы, являющиеся ферментами или связанные с белками-передатчиками сигнала с ферментативной функцией (метаботропные рецепторы, например, GPCR)
рецепторы ретиноевой кислоты, стероидных и тиреоидных гормонов, которые связываются с ДНК и регулируют работу генов.
Для всех рецепторов характерен феномен саморегуляции чувствительности посредством механизма обратной связи - при низком уровне определённого гормона автоматически компенсаторно возрастает количество рецепторов в тканях и их чувствительность к этому гормону - процесс, называемый сенсибилизацией (а также ап-регуляцией (up-regulation), или сенситизацией (sensitization)) рецепторов. И наоборот, при высоком уровне определённого гормона происходит автоматическое компенсаторное понижение количества рецепторов в тканях и их чувствительности к этому гормону - процесс, называемый десенсибилизацией (а также даун-регуляцией (down-regulation), или десенситизацией (desensitization)) рецепторов.
Увеличение или уменьшение выработки гормонов, а также снижение или увеличение чувствительности гормональных рецепторов и нарушение гормонального транспорта приводит к эндокринным заболеваниям.
Механизмы действия
Когда гормон, находящийся в крови, достигает клетки-мишени, он вступает во взаимодействие со специфическими рецепторами; рецепторы «считывают послание» организма, и в клетке начинают происходить определенные перемены. Каждому конкретному гормону соответствуют исключительно «свои» рецепторы, находящиеся в конкретных органах и тканях - только при взаимодействии гормона с ними образуется гормон-рецепторный комплекс.
Механизмы действия гормонов могут быть разными. Одну из групп составляют гормоны, которые соединяются с рецепторами, находящимися внутри клеток - как правило, в цитоплазме. К ним относятся гормоны с липофильными свойствами - например, стероидные гормоны (половые, глюко- и минералокортикоиды) , а также гормоны щитовидной железы. Будучи жирорастворимыми, эти гормоны легко проникают через клеточную мембрану и начинают взаимодействовать с рецепторами в цитоплазме или ядре. Они слабо растворимы в воде, при транспорте по крови связываются с белками-носителями.
Считается, что в этой группе гормонов гормон-рецепторный комплекс выполняет роль своеобразного внутриклеточного реле - образовавшись в клетке, он начинает взаимодействовать с хроматином, который находится в клеточных ядрах и состоит из ДНК и белка, и тем самым ускоряет или замедляет работу тех или иных генов. Избирательно влияя на конкретный ген, гормон изменяет концентрацию соответствующей РНК и белка, и вместе с тем корректирует процессы метаболизма.
Биологический результат действия каждого гормона весьма специфичен. Хотя в клетке-мишени гормоны изменяют обычно менее 1 % белков и РНК, этого оказывается вполне достаточно для получения соответствующего физиологического эффекта.
Большинство других гормонов характеризуются тремя особенностями:
они растворяются в воде;
не связываются с белками-носителями;
начинают гормональный процесс, как только соединяются с рецептором, который может находиться в ядре клетки, ее цитоплазме или располагаться на поверхности плазматической мембраны.
В механизме действия гормон-рецепторного комплекса таких гормонов обязательно участвуют посредники, которые индуцируют ответ клетки. Наиболее важные из таких посредников - цАМФ (циклический аденозинмонофосфат) , инозитолтрифосфат, ионы кальция.


C006/1223

Организм человека очень сложно устроен. Помимо основных органов в организме присутствуют и другие не менее важные элементы всей системы. К таким важным элементам относятся и гормоны. Поскольку очень часто то или иное заболевание связано именно с повышенным или наоборот заниженным уровнем гормонов в организме.

Разберёмся что такое гормоны, как они работают, какой у них химический состав, какие бывают основные виды гормонов, какое влияние на организм они оказывают, какие последствия могут возникать при неправильном их функционировании, и как избавиться от патологий, возникших из-за гормонального дисбаланса.

Что такое гормоны

Гормоны человека – это биологически активные вещества. Что это такое? Это химические вещества, которые содержит организм человека, имеющие очень большую активность при небольшом своём содержании. Где вырабатываются? Они образуются и функционируют внутри клеток желез внутренней секреции. К ним относятся:

  • гипофиз;
  • гипоталамуз;
  • эпифиз;
  • щитовидная железа;
  • паращитовидная железа;
  • вилочковая железа – тимус;
  • поджелудочная железа;
  • надпочечники;
  • половые железы.

Принимать участие в выработке гормона могут и некоторые органы, такие как: почки, печень, плацента у беременных женщин, желудочно-кишечный тракт и другие. Координирует функционирование гормонов гипоталамус – отросток главного мозга небольшого размера (фото ниже).

Гормоны переносятся через кровь и регулируют те или иные процессы по обмену веществ и работе определённых органов и систем. Все гормоны – это специальные вещества, создаваемые клетками организма для оказания воздействия на другие клетки организма.

Определение «гормон» использовалось в первый раз У. Бейлиссом и Э. Старлингом в своих работах в 1902 году в Англии.

Причины и признаки нехватки гормонов

Иногда из-за возникновения различных негативных причин стабильная и беспрерывная работа гормонов может нарушать. К таким неблагоприятным причинам можно отнести:

  • трансформации в внутри человека в силу возраста;
  • заболевания и инфекции;
  • эмоциональные перебои;
  • изменения климата;
  • неблагоприятная экологическая ситуация.

Организм мужского пола более стабилен в гормональном плане в отличие от женских особей. У них гормональный фон может периодически меняться как под действием общих причин, перечисленных выше, так и под влиянием процессов, присущих только женскому полу: менструации, менопаузы, беременность, роды, лактация и прочие факторы.

О том, что в организме возник дисбаланс гормона, говорят следующие признаки:

  • слабость;
  • судороги;
  • головная боль и звон в ушах;
  • потливость.

Таким образом, гормоны в организме человека – это важная составляющая и неотъемлемая часть его функционирования. Последствия гормонального дисбаланса неутешительные, а лечение – долгое и недешевое.

Роль гормонов в жизнедеятельности человека

Все гормоны, несомненно, очень важны для нормальной работы человеческого организма. Они воздействуют на многие процессы, происходящие внутри человеческой особи. Эти вещества находятся внутри людей с момента рождения и до самой смерти.

Вследствие их наличия все люди на земле имеют свои, отличные от других, ростовые и весовые показатели. Эти вещества воздействует на эмоциональную составляющую человеческой особи. Также на протяжении длительного периода они контролируют естественный порядок приумножения и уменьшения клеток в организмах людей. Они координируют становление иммунитета, стимулируя его либо подавляя. Оказывают давление и на порядок обменных процессов.

С их помощью организму человека проще справиться с физическими нагрузками и какими – либо стрессовыми моментами. Так, например, благодаря адреналину человек в сложной и опасной ситуации чувствует прилив сил.

Также гормоны в большой мере воздействуют на организм беременной женщины. Таким образом с помощью гормонов организм готовится к успешному родоразрешению и уходу за новорождённым, в частности, установлению лактации.

Сам момент зачатия и вообще вся функция по репродукции также зависит от действия гормонов. При адекватном содержании этих веществ в крови появляется половое влечение, а при низком и недостающим до необходимого минимума – либидо снижается.

Классификация и виды гормонов в таблице

В таблице представлена очная классификация гормонов.

Следующая таблица содержит основные виды гормонов.

Список гормонов Где вырабатываются Функции гормонов
Эстрон, фолликулин (Эстрогены) Обеспечивает нормальное развитие женского организма, гормональный фон
Эстриол (Эстрогены) Половые железы и надпочечники В большом количестве вырабатывается во время беременности, является индикатором развития плода
Эстрадиол (Эстрогены) Половые железы и надпочечники У женского пола: обеспечение репродуктивной функции. У мужчин: улучшение состояния
Эндорфин Гипофиз, центральная нервная система, почки, пищеварительная система Подготовка организма к восприятию стрессовой ситуации, формирование стабильного положительного эмоционального фона
Тироксин Щитовидная железа Обеспечивает правильный обмен веществ, влияет на работу нервной системы, улучшает работу сердца
Тиреотропин (тиротропин, тиреотропный гормон) Гипофиз Оказывает влияние на работу щитовидной железы
Тиреокальцитонин (кальцитонин) Щитовидная железа Обеспечивает организм кальцием, обеспечивает рост костей и их регенерацию при различного рода травмах
Тестостерон Семенники мужчин Главный половой гормон мужчины. Отвечает за функцию мужской репродукции. Обеспечивает возможность мужчины оставлять потомство
Серотонин Эпифиз, слизистая оболочка кишечника Гормон счастья и спокойствия. Создает благоприятную обстановку, способствует хорошему сну и самочувствию. Улучшает репродуктивную функцию. Способствует улучшению психоэмоционального восприятия. А также помогает снять боль и усталость.
Секретин Тонкая кишка, двенадцатиперстная кишка, кишечник Регулирует водный баланс в организме. Также от него зависит работа поджелудочной железы
Релаксин Яичника, жёлтое тело, плацента, маточные ткани Подготовка организма женщины к родам, формирование родового канала, расширяет кости таза, открывает шейку матки, снижает маточный тонус
Пролактин Гипофиз Выступает как регулятор полового поведения, у женщин в период лактации предотвращает овуляцию, выработка грудного молока
Прогестерон Желтое тело организма женщины Гормон беременности
Паратгормон (паратиреоидный гормон, паратирин, ПТГ) Околощитовидная железа Уменьшает выведение из организма кальция и фосфора с мочой при их дефиците, при избытке кальция и фосфора откладывает его
Панкреозимин (ССК, холецистокинин) Двенадцатиперстная и тощая кишка Стимуляция работы поджелудочной железы, влияет на пищеварение, вызывает чувство
Окситоцин Гипоталамус Родовая деятельность женщины, лактация, проявление чувства привязанности и доверия
Норадреналин Надпочечники Гормон ярости, обеспечивает реакцию организма в случае опасности, увеличивает агрессивность, усиливает чувство ужаса и ненависти
Эпифиз Регулирует суточные биоритмы, гормон сна
Меланоцитостимулирующий гормон (интермедин, меланотропин Гипофиз Кожная пигментация
Лютеинизирующий гормон (ЛГ) Гипофиз У женщин воздействует на эстрогены, обеспечивает процесс созревания фолликулов и наступление овуляции.
Липокаин Поджелудочная железа Предупреждает ожирение печени, способствует биосинтезу фосфолипидов
Лептин Слизистая оболочка желудка, мышцы скелета, плацента, молочные железы Гормон насыщения, поддержание баланса между поступлением и расходом калорий, подавляет аппетит, передает информацию в гипоталамус о массе тела и жировом обмене
Кортикотропин (адренокортикотропный гормон, АКТГ) Гипоталамо-гипофизарная область головного мозга Регуляция функций коры надпочечников
Кортикостерон Надпочечники Регуляция обменных процессов
Кортизон Надпочечники Синтез углеводов из белков, угнетает лимфоидные органы (действие подобно кортизолу)
Кортизол (гидрокортизон) Надпочечники Сохранение энергетического равновесия, активизирует распад глюкозы, запасает ее в виде гликогена в печени, как запасное вещество на случай стрессовых ситуаций
Инсулин Поджелудочная железа Поддержание сниженного значения сахара в крови, оказывает влияние на другие процессы обмена веществ
Дофамин (допамин) Головной мозг, надпочечники, поджелудочная железа Отвечает за получение удовольствия, за регулировку активной деятельности, за улучшение показателей памяти, мышления, логики и сообразительности.

Также координирует режим дня: время на сон и время на бодрствование.

Гормон роста (соматотропин) Гипофиз Обеспечивает линейный рост у детей, регулирует обменные процессы
Гонадотропин-высвобождающий гормон (гонадотропин-рилизинг гормон) Передний отдел гипоталамуса Участвует в синтезе других половых гормонов, в росте фолликулов, регулирует овуляцию, поддерживает процесс формирования желтого тела у женщин, процессы сперматогенеза у мужчин
Гонадотропин хорионический Плацента Препятствует рассасыванию желтого тела, нормализует гормональный фон беременной
Глюкагон Поджелудочная железа, слизистая оболочка желудка и кишечника Поддержание сахарного равновесия в крови, обеспечивает поступление глюкозы в кровь из гликогена
Витамин Д Кожа Координирует процесс размножения клеток. Оказывает воздействие на их синтез.

Жиросжигатель, антиоксидант

Вазопрессин

(антидиуретический гормон)

Гипоталамус Регуляция количества воды в организме
Ваготонин Поджелудочная железа Повышение тонуса и усиление активности блуждающих нервов
Антимюллеров гормон (АМГ) Половые железы Обеспечивает создание системы репродукции, сперматогенеза и овуляции.
Андростендион Яичники, Надпочечники, Яички Данный гормон предшествует возникновению гормонов усиленного действия андрогенов, которые в дальнейшем преобразуются в эстрогены и тестостерон.
Альдостерон Надпочечники Действие заключается в регулировке минерального обмена веществ: увеличивает содержание натрия и уменьшает состав калия. Также из-за него повышается артериальное давление.
Адренокортикотропин Гипофиз Действие заключается в контроле за выработкой гормонов надпочечников
Адреналин Надпочечники Проявляется в эмоционально сложных ситуациях. Действует как дополнительная сила в организме. Обеспечивает человека дополнительной энергией для выполнения тех или иных критических задач. Этому гормону сопутствуют чувство страха и злости.

Основные свойства гормонов

Какой бы то не была классификация гормонов и их функции все они имеют общие признаки. Основные свойства гормонов:

  • биологическая активность несмотря на невысокую концентрацию;
  • удалённость действия. Если гормон образуется в одних клетках, то это вовсе не означает, что он регулирует именно эти клетки;
  • ограниченность действия. Каждый гормон играет свою строго отведённую ему роль.

Механизм действия гормонов

Виды гормонов оказывают свое влияние на механизм их действия. Но в целом это действие заключается в том, что гормоны, транспортируясь по крови, достигают клеток, являющихся мишенями, проникают в них и передают несущий сигнал от организма. В клетке в этот момент происходят изменения, связанные с полученным сигналом. У каждого конкретного гормона есть свои конкретные клетки, находящиеся в органах и тканях, к которым они стремятся.

Одни виды гормонов присоединяются к рецепторам, которые содержатся внутри клетки, в большинстве случаев, в цитоплазме. К таким видам относятся те из них, которые имеют липофильные свойства гормонов и гормоны, образуемые щитовидной железой. За счёт своей жирорастворимости они легко и быстро проникают внутрь клетки к цитоплазме и взаимодействуют с рецепторами. Но в воде они трудно растворяются, и поэтому им приходится присоединяться к белкам-носителям для перемещения по крови.

Другие гормоны могут растворяться в воде, поэтому для них нет надобности присоединяться к белкам-носителям.

Эти вещества оказывают воздействие на клетки и тела в момент соединения с нейронами, находящимся внутри клеточного ядра, а также в цитоплазме и на плоскости мембраны.

Для их работы необходимо посредническое звено, которое обеспечивает ответную реакцию от клетки. Они представлены:

  • циклическим аденозинмонофосфатом;
  • инозитолтрифосфатом;
  • ионами кальция.

Именно поэтому недостаток кальция в организме оказывает неблагоприятное воздействие на гормоны в организме человека.

После того, как гормон передал сигнал, он расщепляется. Расщепляться он может в следующих местах:

  • в клетке, к которой перемещался;
  • в крови;
  • в печени.

Либо может выводиться из организма вместе с мочой.

Химический состав гормонов

По составным элементам химии можно выделить четыре основные группы гормонов. Среди них:

  1. стероиды (кортизол, альдостерон и другие);
  2. состоящие из белков (инсулин и прочие);
  3. образованные от аминокислотных соединений (адреналин и прочие);
  4. пептидные (глюкагон, тиреокальцитонин).

Стероиды, при этом, можно разграничить на гормоны по половом признаку и надпочечные гормоны. А половые классифицируются на: эстроген – женский и андрогенов – мужской . Эстроген в одной своей молекуле содержит 18 атомов углерода. В качестве примера можно рассмотреть эстрадиол, который имеет такую химическую формулу: С18Н24О2. Исходя из молекулярного строения можно выделить основные признаки:

  • в молекулярном содержании отмечается присутствие двух гидроксильных групп;
  • по химической структуре эстрадиол можно определить как к группе спиртов, так и группе фенолов.

Андрогены отличаются своей специфической структурой вследствие нахождения в их составе такой молекулы углеводорода, как андростан. Разновидность андрогенов представлена следующими их видами: тестостерон, андростендион и другие.

Название, которое даёт химия тестостерону - семнадцать-гидрокси-четыре-андростен-трион , а дигидротестостерону - семнадцать-гидроксиандростан-трион .

По составу тестостерона можно сделать вывод, что данный гормон представляет собой ненасыщенный кетоноспирт, а дигидротестостерон и андростендион очевидно являются продуктами его гидрирования.

Из наименования андростендиола следует информация, что его можно причислить к группе многоатомных спиртов. Также из названия можно сделать вывод о степени его насыщения.

Будучи гормоном, определяющим половые признаки, прогестерон и производные от него подобным же образом, что и эстрогены, является гормоном, присущим женщинам, и принадлежит к С21-стероидам.

Изучая структуру молекулы прогестерон, становится ясным тот факт, что этот гормон принадлежит к группе кетонов и в составе его молекулы присутствуют целых две карбонильные группы. Кроме гормонов, отвечающих за развитие половых признаков, в состав стероидов входят следующие гормоны: кортизол, кортикостерон и альдостерон .

Если сравнить формульные структуры представленных выше видов, то, то можно сделать вывод, что они очень схожи. Сходство заключается в составе ядра, которое содержит 4 карбо-цикла: 3 с шестью атомами и 1 с пятью.

Следующая группа гормонов – аминокислотные производные. В их состав можно отнести: тироксин, адреналин и норадреналин .

Пептидные гормоны являются сложнее остальных по своему составу. Одним из таких гормонов является вазопрессин.

Вазопрессин - это гормон, сформировавшийся в гипофизе, значение относительной молекулярной массы которого приравнивается к одной тысяче восьмидесяти четырём. Кроме того, в своём строении он содержит аминокислотные остатки в количестве девяти штук.

Глюкагон, находящийся в поджелудочной железе, также является одним из видов пептидных гормонов. Его относительная масса превышает относительная массу вазопрессина более, чем в два раза. Она составляет 3485 единиц за счёт того, что в его строении насчитывается 29 аминокислотных остатков.

В составе глюкагона содержится двадцать восемь групп пептидов.

Структура глюкагона у всех позвоночных практически одинакова. За счёт этого, различные препараты, содержащие этот гормон, создаются медицинским путем из поджелудочной железы животных. Также возможен искусственный синтез этого гормона в условиях лабораторий.

Большее содержание аминокислотных элементов включают в себя белковые гормоны. В них аминокислотные звенья соединяются в одну и более цепей. Например, молекула инсулина состоит из двух полипептидных цепей, которые включают в свой состав 51 аминокислотное звено. Сами цепи соединяются дисульфидными мостиками. Инсулин людей отличается относительной молекулярной массой, равной пяти тысячам восьмистам семи единицами. Данный гормон имеет гомеопатические значение для развития генной инженерии. Именно поэтому его производят искусственно в лабораторных условиях или трансформируют из организма животных. Для этих целей и понадобилось определять химическую структуру инсулина.

Ответить

1. Какие вещества называют гормонами? Каковы их основ-ные свойства?

Гормоны — химические соединения, обладающие вы-сокой биологической активностью, выделяются железами внутренней секреции.

Свойства гормонов:

  • вырабатываются в небольшом количестве;
  • дистантный характер действия (органы и системы, на которые действуют гормоны, расположены далеко от места их образования, поэтому гормоны с током крови разносятся по всему организму);
  • длительное время сохраняются в активном состоянии;
  • строгая специфичность действия;
  • высокая биологическая активность;
  • регулируют процессы обмена веществ, обеспечивают постоянство состава среды, влияют на рост и развитие органов, обеспечивают ответную реакцию организма на воздействие внешней среды.

По химической природе гормоны делят на три группы полипептиды и белки (инсулин); аминокислоты и их про изводные (тироксин, адреналин); стероиды (половые гор-моны).

Если образуется и выделяется в кровь увеличенное ко-личество гормонов — это гиперфункция. Если количество гормонов, образующихся и выделяющихся в кровь, умень-шается, то это — гипофункция.

2. Какие железы вырабатывают гормоны? Назовите их. Какое действие на организм оказывают гормоны этих желез?

Щитовидная железа находится на шее, впереди гортани, вырабатывает гормоны, богатые йодом — тироксин и др. Они стимулируют обмен веществ в организме. От их количества в крови зависит уровень потребления кислорода органами и тканями организма, т.е. гормоны щитовидной железы стиму-лируют окислительные процессы в клетках. Кроме того, они регулируют водный, белковый, жировой, углеводный, мине-ральный обмен, рост и развитие организма. Оказывают дей-ствие на функции центральной нервной системы и высшую нервную деятельность. Недостаток гормона в детском возрас-те приводит к кретинизму (задерживается рост, половое и психическое развитие, нарушаются пропорции тела). При гипофункции у взрослого человека развивается микседема (снижение обмена веществ, ожирение, понижение темпера-туры тела, апатия). При гиперфункции у взрослых возникает базедова болезнь (увеличение щитовидной железы, развитие зоба, пучеглазие, повышенный обмен веществ, повышенная возбудимость нервной системы).

Надпочечники. Небольшие тельца над почками. Они со-стоят из двух слоев: наружного (коркового) и внутреннего (мозгового). Наружное вещество вырабатывает гормоны, которые регулируют обмен веществ (натрий, калий, белки, углеводы, жиры), и половые гормоны (обуславливают раз-витие вторичных половых признаков). При недостаточной функции коры надпочечников развивается заболевание, ко-торое называется бронзовой болезнью. Кожа приобретает бронзовую окраску, наблюдается повышенная утомляе-мость, потеря аппетита, тошнота. При гиперфункции над-почечников отмечается увеличение синтеза половых гормо-нов. При этом меняются вторичные половые признаки. Например, у женщин появляются усы, борода и т.д.

Внутреннее вещество вырабатывает гормоны адрена-лин и норадреналин. Адреналин ускоряет кругооборот крови, усиливает частоту сердечных сокращений, мобили-зует все силы организма при стрессовых ситуациях, повы-шает содержание сахара в крови (расщепляет гликоген). Количество адреналина находится под контролем ЦНС, недостатка не бывает. При избытке учащает работу сердца, сужает кровеносные сосуды. Норадреналин замедляет час-тоту сердечных сокращений.

Поджелудочная железа. Находится в брюшной полости тела, ниже желудка. Это железа смешанной секреции, име-ет выводные протоки и выделяет ферменты, участвующие в пищеварении. Отдельные клетки поджелудочной железы выделяют в кровь гормоны. Одна группа клеток вырабаты-вает гормон глюкагон, способствующий превращению гликогена печени в глюкозу, в результате уровень сахара в крови повышается. Другие клетки вырабатывают инсулин. Это единственный гормон, который понижает содержание сахара в крови (способствует синтезу гликогена в клетках печени). При недостаточности функции поджелудочной железы развивается сахарный диабет. При этом повышает-ся уровень сахара в крови. Углеводы не задерживаются в организме, а выводятся с мочой в виде глюкозы.

Половые железы — семенники у мужчин и яичники у женщин — также относятся к железам смешанной секреции. За счет внешнесекреторной функции образуются сперматозоиды и яйцеклетки. Эндокринная функция свя-зана с выработкой мужских и женских половых гормонов, которые регулируют развитие вторичных половых призна-ков. Они оказывают влияние на формирование тела, обмен веществ и половое поведение. В семенниках вырабатыва-ются андрогены. Они стимулируют развитие вторичных половых признаков, характерных для мужчин (рост боро-ды, усов, развитие мускулатуры и др.), повышают основ-ной обмен, необходимы для созревания сперматозоидов.

В яичниках образуются женские половые гормоны — эстрогены, под влиянием которых происходит формирова-ние вторичных половых признаков, характерных для жен-щин (форма тела, развитие молочных желез и др.) Материал с сайта

Гипофиз. Располагается ниже моста головного мозга и состоит из трех долей: передней, промежуточной и задней. Передняя доля выделяет гормон роста, который влияет на рост костей в длину, ускоряет процессы обмена веществ, приводит к усилению роста, увеличению массы тела. Недос-таток гормона — карликовость, при этом пропорции тела и умственное развитие не нарушаются. Гиперфункция в дет-ском возрасте приводит к гигантизму (у детей длинные ко-нечности, они недостаточно физически выносливые), у взрослых возникает акромегалия (увеличиваются размеры кисти, стопы, лицевая часть черепа, нос, губы, подбородок). Гипофункция у взрослых приводит к изменению обмена веществ: либо к ожирению, либо к резкому похуданию.

Промежуточная доля гипофиза выделяет гормон, влияющий на пигментацию кожи.

Задняя доля образована нервной тканью. Гормоны она не синтезирует. В заднюю долю гипофиза транспортируют-ся биологически активные вещества, вырабатываемые яд-рами гипоталамуса. Одно из них избирательно влияет на сокращения гладкой мускулатуры матки и секрецию мо-лочных желез. Другое повышает кровяное давление и за-держивает выведение мочи. При уменьшении количества этого вещества мочевыделение возрастает до 10-20 л. в су-тки. Эту болезнь называют несахарным диабетом.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • что такое гормоны и каковы их свойства
  • гормоны кратко о них
  • гормоны краткое содержание
  • назовите основные свойства гормонов
  • назовите временные железы, какие гормоны они вырабатывают и каково их значение
Статьи по теме