Охарактеризовать уравнение (закон) Старлинга в патогенезе развития различных видов отека. Капилляры: строение, механизмы регуляции проницаемости эндотелия кровеносных сосудов

Отеки представляют собой нарушение равновесия в обмене воды между кровью, тканевой жидкостью и лимфой. Причины возникновения и развития отеков можно разбить на две группы : отеки, вызванные изменением факторов, определяющих местный баланс воды и электролитов и вторая группа - отеки, обусловленные регуляторными и почечными механизмами, приводящими к задержке натрия и воды в организме.

Скопление внеклеточной жидкости в полостях тела получило название водянки . Различают следующие виды водянок: водянка брюшной полости – асцит; водянка плевральной полости – гидроторакс; водянка полости перикарда – гидроперикард; водянка желудочков мозга – гидроцефалия; водянка оболочек яичка – гидроцеле.

В развитии отеков принимают участие шесть основных патогенетических факторов.

1. Гидродинамический. На уровне капилляров обмен жидкости между сосудистым руслом и тканями осуществляется следующим образом. В артериальной части капилляров давление жидкости внутри сосуда превышает ее давление в тканях, и поэтому здесь жидкость идет из сосудистого русла в ткань. В венозной части капилляров имеются обратные соотношения: в ткани давление жидкости выше и жидкость идет из ткани в сосуды. В норме в этих перемещениях устанавливается равновесие, которое в условиях патологии может нарушаться. Если повысится давление в артериальной части капилляров, то жидкость начнет интенсивнее переходить из сосудистого русла в ткани, а если такое повышение давления будет происходить в венозной части капиллярного русла, то это будет препятствовать переходу жидкости из ткани в сосуды. Повышение давления в артериальной части капилляров встречается крайне редко и может быть связано с общим увеличением объема циркулирующей крови. Повышение же давления в венозной части бывает в условиях патологии достаточно часто, например, при венозной гиперемии, при общем венозном застое, связанном с сердечной недостаточностью. В этих случаях жидкость задерживается в тканях и развивается отек, в основе которого лежит гидродинамический механизм.

2. Мембранный . Этот фактор связан с повышением проницаемости сосудисто-тканевых мембран, поскольку в данном случае облегчается циркуляция жидкости между кровеносным руслом и тканями. Повышение проницаемости мембран может наступать под влиянием биологически активных веществ (например, гистамина), при накоплении в тканях недоокисленных продуктов обмена веществ, при действии токсических факторов (ионов хлора, азотнокислого серебра и др.). Частой причиной развития отеков, в основе которых лежит мембранный фактор, являются микробы, выделяющие фермент гиалуронидазу, который, воздействуя на гиалуроновую кислоту, ведет к деполимеризации мукополисахаридов клеточных мембран и вызывает повышение их проницаемости.

3. Осмотический . Накопление в межклеточных пространствах и полостях тела электролитов ведет к повышению в этих областях осмотического давления, что вызывает приток воды.

4. Онкотический. При некоторых патологических состояниях онкотическое давление в тканях может становиться большим, нежели в сосудистом русле. В таком случае жидкость будет стремиться из сосудистой системы в ткани, и разовьется отек. Это происходит либо в случае повышения концентрации крупномолекулярных продуктов в тканях, либо в случае снижения содержания белка в плазме крови.

5. Лимфатический . Этот фактор играет роль в развитии отека в тех случаях, когда в органе наступает застой лимфы. При повышении давления в лимфатической системе вода из нее идет в ткани, что и приводит к отеку.

6. В числе факторов, способствующих развитию отека, выделяют также снижение тканевого механического давления , когда уменьшается механическое сопротивление току жидкости из сосудов в ткани, как, например, при обеднении тканей коллагеном, повышении их рыхлости при усилении активности гиалуронидазы, что наблюдается, в частности, при воспалительных и токсических отеках.

Таковы основные патогенетические механизмы развития отеков. Однако «в чистом виде» монопатогенетические отеки встречаются очень редко, обычно рассмотренные выше факторы комбинируются. нка желудочков мозга – гидроцефалия.

Транскапиллярный обмен (ТКО) – это процессы движения веществ (воды

и растворенных в ней солей, газов, аминокислот, глюкозы шлаков и др.) через

стенку капилляра из крови в интерстициальную жидкость и из интерстициаль-

ной жидкости в кровь, это связывающее звено перемещения веществ между

кровью и клетками.

Механизм транскапиллярного обмена включает процессы фильтрации,

реабсорбции и диффузии.

Принципиальные закономерности фильтрации и реабсорбции жидкостей

при ТКО отражает формула Старлинга:

ТКО = К [(ГДК – ГДИ) – (КОДК – КОДИ)]

ТКО = К (∆ГД- ∆КОД).

В формулах:

К – константа проницаемости стенки капилляров;

ГДК – гидростатическое давление в капиллярах;

ГДИ – гидростатическое давление в интерстиции;

КОДК – коллоидно-осмолярное давление в капиллярах;

КОДИ - коллоидно-осмолярное давление в интерстции;

∆ГД – разница гидростатического внутрикапиллярного и интестициально-

го давлений;

∆КОД – разница коллоидно-осмолярного внутрикапилярного и интерсти-

циального давлений.

В артериальной и венозной частях капиллярного русла эти факторы ТКО имеют различное значение.

Величина константы проницаемости (К) определяется функциональным состоянием организма, его обеспеченностью витаминами, действием гормонов, вазоактивных веществ, факторов интоксикации и пр.

При движении крови через капилляры в артериальной части капиллярного русла преобладают силы гидростатического внутрикапиллярного давления, что вызывает фильтрацию жидкости из капилляров в интерстиций и к клеткам; в венозной части капиллярного русла преобладают силы внутрикапиллярного КОД, что вызывает реабсорбцию жидкости из интерстиция и от клеток в капилляры. Силы фильтрации и реабсорбции и, соответственно, объемы фильтрации и реабсорбции равны. Так, рассчеты по формуле Стерлинга показывают, что в артериальной части капиллярного русла силы фильтрации равны:

ТКО = К [(30-8)- (25-10)] = +К 7 (мм рт.ст.);

в венозной части капиллярного русла силы реабсорбции равны:

ТКО = К[(15-8) - (25-11)] = -К 7 (мм рт.ст.).

Приведены лишь принципиальные сведения о ТКО. В действительности имеется небольшое преобладание фильтрации над реабсорбцией. Однако отека тканей не возникает, так как в транскапиллярном обмене жидкостей участвует и отток жидкостей по лимфатическим капиллярам (рис. 3). При неполноценности дренирующей функции лимфатических сосудов отек тканей возникает даже при небольшом нарушении сил ТКО. В транскапиллярном обмене участвуют и процессы диффузии электролитов и неэлектролитов через стенки капилляров, то есть процессы их проникновения через капиллярную стенку в силу различия градиентов концентрации и их различной способности к проникновению (см. ниже). В более полном виде закономерности ТКО обмена могут быть представлены в виде следующей формулы.

ТКО = К (∆ГД - Д Ч ∆КОД) - Лимфоток,

где символом Д обозначены процессы диффузии и отражения макромолекул от стенки капилляра.

Изменения проницаемости капилляров, гидростатических и коллоидно-осмотических давлений вызывают соответствующие изменения и ТКО. В механизмах ТКО особенно важную роль, как уже ранее указывалось, играют белки плазмы - альбумины, глобулины, фибриноген и др., создающий КОД. Величина КОД плазмы (25 мм рт. ст.) на 80-85% обеспечивается альбуминами, на 16-18% глобулинами и примерно на 2% белками свертывающей системы крови. Альбумины обладают наибольшей водоудерживающей функцией: 1 г альбумина удерживает 18-20 мл воды, 1 г глобулинов - только 7мл. Все белки плазмы в целом удерживают примерно 93% внутрисосудистой жидкости. Критический уровень содержания белка в плазме зависит от профиля протеинограммы и ориентировочно равен 40-50 г/л. Снижение ниже этого уровня (особенно в случаях преобладающего снижения альбуминов) вызывает гипопротеинемические отеки, ведет к уменьшению ОЦК, исключает возможность эффективного репаративного восстановления объема крови после кровопотери.

Учет закономерностей Старлинга в практической работе во многих случаях является основой построения терапии, адекватной патологическому состоянию. Закономерности Старлинга патогенетически объясняют важнейшие проявления всех заболеваний, связанных с нарушениями водно-солевого обмена и гемодинамики, обеспечивают правильный выбор необходимой терапии.

В частности, они раскрывают механизм отека легких при гипертоническом кризе и при сердечной недостаточности, механизм репаративного притока интерстициальной жидкости в сосудистое русло при кровопотере, причину развития отечно-асцитического синдрома при тяжелых гипопротеинемиях. Эти же закономерности обосновывают патогенетическую адекватность применения для лечения отека легких нитритов, ганглиоблокаторов, кровопусканий, наложения жгутов на конечности, морфина, ИВЛ с положительным давлением в конце вдоха, фторотанового наркоза и пр., объясняют категорическую недопустимость применения в лечении отека легких инфузий осмодиуретиков (маннитола и др.), обосновывают необходимость коллоидно-кристаллоидных препаратов при лечении шока и кровопотери, их объемы и схемы применения.

Как уже было указано выше, кроме процессов фильтрации и реабсорбции в механизмах ТКО большое значение имеют процессы диффузии. Диффузия – это перемещение растворенных веществ через разделяющую проницаемую мембрану или в самом растворе из зоны с высокой концентрацией вещества в зону с низкой концентрацией. При ТКО диффузия постоянно поддерживается разностью концентраций веществ по обе стороны проницаемой капиллярной мембраны. Эта разность непрерывно возникает в ходе обмена веществ и движения жидкостей. Интенсивность диффузии зависит от константы проницаемости капиллярной мембраны и от свойств диффундирующего вещества. Диффузия веществ из интерстиция в клетки и из клеток в интерстиций определяет обмен веществ между клетками.

Обменные процессы в капиллярах осуществляются различными путями. Одну из основных ролей в обмене жидкостью и различными веществами между кровью и межклеточным пространством играет диффузия. Скорость диффузии большая. В основном обмен происходит через поры между эндотелиальными клетками диаметром 6-7 мкм. Просвет пор значительно меньше, чем размер молекулы альбумина. Проницаемость капилляров для различных веществ находится в зависимости от соотношения размеров молекул этих веществ и размеров пор капилляров. Мелкие молекулы, такие как Н 2 0 или NaCl, диффундируют легче, чем, например, более крупные молекулы глюкозы, аминокислот.

К основным механизмам, обеспечивающим обмен между внутрисосудистым и межклеточным пространствами, относятся также фильтрация и реабсорбция, происходящие в терминальном русле. Под фильтрацией понимается неспецифический пассивный транспорт, который осуществляется по градиенту давления по обе стороны биологической мембраны. Согласно теории Старлинга, между объемами жидкости, фильтрующейся в артериальном конце капилляра, и жидкости, подвергающейся реабсорбции в венозном конце капилляра, в нормальном состоянии существует динамическое равновесие.

Интенсивность фильтрации и реабсорбции в капиллярах определяется следующими параметрами:

  • гидростатическим давлением крови на стенку капилляра;
  • гидростатическим давлением интерстициальной жидкости;
  • онкотическим давлением плазмы крови;
  • онкотическим давлением интерстициальной жидкости;
  • коэффициентом фильтрации, который прямо пропорционально зависит от проницаемости капиллярной стенки.

Диаметр капилляров артериального и венозного концов обычно составляет в среднем 6 мкм. Средняя линейная скорость кровотока в капилляре равна 0,03 см/с. Давление интерстициальной (тканевой) жидкости в норме близко к нулю или равно 1-3 мм рт. ст.

На артериальном конце капилляра фильтрационное давление равно 9-10 мм рт. ст., в то время как на венозном конце капилляра реабсорбционное давление равно 6 мм рт. ст. Фильтрационное давление на артериальном конце капилляра будет на 3-4 мм рт. ст. больше, чем реабсорбционное на венозном конце капилляра. Это приводит к перемещению молекул воды и растворенных в ней питательных веществ из крови в интерстициальное пространство в зоне артериальной части капилляра.

Ввиду того что реабсорбционное давление в венозном конце капилляра на 3-4 мм рт. ст. меньше фильтрационного в артериальном конце капилляра, около 90 % интерстициальной жидкости с конечными продуктами жизнедеятельности клеток возвращается в венозный конец капилляра. Около 10 % при этом из интерстициального пространства удаляется через лимфатические сосуды.

При различных изменениях любого из факторов, которые влияют на нормальное фильтрационно-реабсорбционное равновесие, происходят нарушения в системах гистогематических барьеров, в частности в гематоофтальмическом, гематоэнцефалическом и других барьерах.

Оглавление темы "Кровоснабжение органов и тканей. Сопряженные функции сосудов. Микроциркуляция (микрогемодинамика).":
1. Кровоснабжение легких. Малый круг кровообращения. Интенсивность кровотока в сосудах легкого. Миогенная, гуморальная регуляция кровотока в легочных сосудах.
2. Кровоснабжение желудочно-кишечного тракта (ЖКТ). Интенсивность кровотока в сосудах желудочно-кишечного тракта (ЖКТ). Миогенная, гуморальная регуляция кровотока в сосудах желудочно-кишечного тракта (ЖКТ).
3. Кровоснабжение cлюной железы (слюных желез). Кровоснабжение поджелудочной железы. Регуляция кровотока в сосудах желез.
4. Кровоснабжение печени. Интенсивность кровотока в сосудах печени. Миогенная, гуморальная регуляция кровотока в печени.
5. Кровоснабжение кожи. Интенсивность кровотока в сосудах кожи. Миогенная, гуморальная регуляция кровотока в коже.
6. Кровоснабжение почки (почек). Интенсивность кровотока в сосудах почки (почек). Миогенная, гуморальная регуляция кровотока в почке (почках).
7. Кровоснабжение мышц. Интенсивность кровотока в сосудах мышц. Миогенная, гуморальная регуляция кровотока в мышцах.
8. Сопряженные функции сосудов. Резистентная функция сосудов. Емкостная функция сосудов. Обменная функция сосудов.
9. Микроциркуляция (микрогемодинамика). Проницаемость капилляров. Стенки капилляров. Типы капиляров.
10. Гидростатическое давление в капиляре. Транскапиллярный обмен веществ. Линейная скорость кровотока в микроциркуляторном русле. Шунтирующие сосуды (шунтирование).

Гидростатическое давление в капиляре. Транскапиллярный обмен веществ. Линейная скорость кровотока в микроциркуляторном русле. Шунтирующие сосуды (шунтирование).

Гидростатическое давление на артериальном конце «усредненного» капилляра равно примерно 30 мм рт. ст., на венозном- 10-15 мм рт. ст. Этот показатель варьирует в различных органах и тканях и зависит от соотношения пре- и посткапиллярного сопротивления, которое и определяет его величину. Так, в капиллярах почек он может достигать 70 мм рт. ст., а в легких - только 6-8 мм рт. ст.

Транскапиллярный обмен веществ обеспечивается путем диффузии, фильтрации-абсорбции и микропиноцитоза. Скорость диффузии высока: 60 л/мин. Легко осуществляется диффузия жирорастворимых веществ (СО2, О2), водорастворимые вещества попадают в интерстиций через поры, крупные вещества - путем пиноцитоза.

Второй механизм, обеспечивающий обмен жидкости и растворенных в ней веществ между плазмой и межклеточной жидкостью,- фильтрация-абсорбция. Давление крови на артериальном конце капилляра способствует переходу воды из плазмы в тканевую жидкость. Белки плазмы, создавая онкотическое давление, равное примерно 25 мм рт. ст., задерживают выход воды. Гидростатическое давление тканевой жидкости около 3 мм рт. ст., онкотическое - 4 мм рт. ст. На артериальном конце капилляра обеспечивается фильтрация, на венозном - абсорбция. Между объемом жидкости, фильтрующейся на артериальном конце капилляра и абсорбирующейся в венозном конце, существует динамическое равновесие.

Линейная скорость кровотока в сосудах микроциркуляторного русла мала - от 0,1 до 0,5 мм/с. Низкая скорость кровотока обеспечивает относительно длительный контакт крови с обменной поверхностью капилляров и создает оптимальные условия для обменных процессов.

Отсутствие мышечных клеток в стенке капилляров указывает на невозможность активного сокращения капилляров. Пассивное сужение и расширение капилляров, величина кровотока и количество функционирующих капилляров зависят от тонуса гладкомышечных структур терминальных артериол, метартериол и прекапиллярных сфинктеров.

Процессы транскапиллярного обмена жидкости в соответствии с уравнением Старлинга (рис. 9.25) определяется силами, действующими в области капилляров: капиллярным гидростатическим давлением (Рс) и гидростатическим давлением интерстициальной жидкости (Pi), разность которых (Рс - Pi) способствует фильтрации, т. е. переходу жидкости из внутри-сосудистого пространства в интерстициальное; коллоидно-осмотическим давлением крови (Пс) и интерстициальной жидкости (Пi), разность которых (Пс - Пi) способствует абсорбции, т. е. движению жидкости из тканей во внутрисосудистое пространство, а - осмотический коэффициент отражения капиллярной мембраны, который характеризует реальную проницаемость мембраны не только для воды, но и для растворенных в ней веществ, а также белков. Если фильтрация и абсорбция сбалансированы, то наступает «старлинговое равновесие».


Своеобразие строения терминального сосудистого русла различных органов и тканей отражает и зависит от их функциональных особенностей, прежде всего от уровня обмена кислорода, интенсивности процессов метаболизма. Так, в различных тканях и органах капилляры образуют сеть определенной плотности в зависимости от их метаболической активности. На основании этих данных введено понятие «критическая толщина тканевого слоя» - наибольшая толщина ткани между двумя капиллярами, которая обеспечивает оптимальный транспорт кислорода и эвакуацию продуктов метаболизма. Чем интенсивнее обменные процессы в органе, тем меньше критическая толщина ткани, т. е. между этими показателями существует обратно пропорциональная зависимость. В большинстве паренхиматозных органов величина этого показателя составляет всего 10-30 мкм, а в органах с замедленными процессами обмена она возрастает до 1000 мкм.

Для оценки функциональной активности шунтирующих сосудов (артериовенозных анастомозов ) используют возможность перехода частиц, превышающих по размерам диаметр капилляров, из артериального отдела сосудистого русла в венозный.

Рассчитано, что кровоток через анастомозы во много раз превышает кровоток по капиллярам . Так, через анастомоз диаметром 40 мкм может пробрасываться в 250 раз больше крови, чем через капилляр такой же длины, но диаметром 10 мкм. Диаметр артериовенозных анастомозов в разных органах колеблется в широких пределах (например, в сердце - 70-170 мкм, в почках - 30-440 мкм, в печени - 100-370 мкм, в тонком кишечнике - 20-180 мкм, в легких - 28-500 мкм, в скелетных мышцах - 20-40 мкм).

Согласно классической теории Э. Старлинга (1896), нарушение обмена воды между капиллярами и тканями определяется следующими факторами: 1) гидростатическим давлением крови в капиллярах и давлением межтканевой жидкости; 2) коллоидноосмотическим давлением плазмы крови и тканевой жидкости; 3) проницаемостью капиллярной стенки.

Кровь движется в капиллярах с определенной скоростью и под определенным давлением (рис. 12-45), в результате чего создаются гидростатические силы, стремящиеся вывести воду из капилляров в интерстициальное пространство. Эффект гидростатических сил будет тем больше, чем выше кровяное давление и чем меньше величина давления тканевой жидкости. Гидростатическое давление крови в артериальном конце капилляра кожи человека составляет 30-32 мм рт.ст., а в венозном конце - 8-10 мм рт.ст.

Установлено, что давление тканевой жидкости является величиной отрицательной. Она на 6-7 мм рт.ст. ниже величины атмосферного давления и, следовательно, обладая присасывающим эффектом действия, способствует переходу воды из сосудов в межтканевое пространство.

Таким образом, в артериальном конце капилляров создается эффективное гидростатическое давление (ЭГД) - разность между гидростатическим давлением крови и гидростатическим давлением межклеточной жидкости, равное ~ 36 мм рт.ст. (30 - (-6)). В венозном конце капилляра величина ЭГД соответствует 14 мм рт.ст.

Удерживают воду в сосудах белки, концентрация которых в плазме крови (60-80 г/л) создает коллоидно-осмотическое давление, равное 25-28 мм рт.ст. Определенное количество белков содержится в межтканевых жидкостях. Коллоидно-осмотическое

Обмен жидкости между различными частями капилляра и тканью (по Э. Старлингу): pa - нормальный перепад гидростатического давления между артериальным (30 мм рт.ст.) и венозным (8 мм рт.ст.) концом капилляра; bc - нормальная величина онкотического давления крови (28 мм рт.ст.). Влево от точки A (участок Ab) происходит выход жидкости из капилляра в окружающие ткани, вправо от точки А (участок Ac) происходит ток жидкости из ткани в капилляр (А1 - точка равновесия). При повышении гидростатического давления (p"a") или снижении онкотического давления (b"c") точка A смещается в положение А1 и А2. В этих случаях переход жидкости из ткани в капилляр затрудняется и возникает отек

давление интерстициальной жидкости для большинства тканей составляет ~ 5 мм рт.ст. Белки плазмы крови удерживают воду в сосудах, белки тканевой жидкости - в тканях. Эффективная онкотическая всасывающая сила (ЭОВС) - разность между величиной коллоидно-осмотического давления крови и межтканевой жидкости. Она составляет ~ 23 мм рт. ст. (28-5). Если эта сила превышает величину эффективного гидростатического давления, то жидкость будет перемещаться из интерстициального пространства в сосуды. Если ЭОВС меньше ЭГД, обеспечивается процесс ультрафильтрации жидкости из сосуда в ткань. При выравнивании величин ЭОВС и ЭГД возникает точка равновесия А (см. рис. 12-45).



В артериальном конце капилляров (ЭГД = 36 мм рт.ст., а ЭОВС = 23 мм рт.ст.) сила фильтрации преобладает над эффективной онкотической всасывающей силой на 13 мм рт.ст. (36-23). В точке равновесия А эти силы выравниваются и составляют 23 мм рт.ст. В венозном конце капилляра ЭОВС превосходит эффективное гидростатическое давление на 9 мм рт.ст. (14 - 23 = -9), что определяет переход жидкости из межклеточного пространства в сосуд.

По Э. Старлингу, имеет место равновесие: количество жидкости, покидающей сосуд в артериальной части капилляра, должно быть равно количеству жидкости, возвращающейся в сосуд в венозном конце капилляра. Как показывают расчеты, такого равновесия не происходит: сила фильтрации в артериальном конце капилляра равна 13 мм рт.ст., а всасывающая сила в венозном конце капилляра -9 мм рт.ст. Это должно приводить к тому, что в каждую единицу времени через артериальную часть капилляра в окружающие ткани жидкости выходит больше, чем возвращается обратно. Так оно и происходит - за сутки из кровяного русла в межклеточное пространство переходит около 20 л жидкости, а обратно через сосудистую стенку возвращается только 17 л. Три литра транспортируется в общий кровоток через лимфатическую систему. Это довольно существенный механизм возврата жидкости в кровяное русло, при повреждении которого могут возникать так называемые лимфатические отеки.

Известны две формы нарушения водного обмена: обезвоживание организма (дегидратация) и задержка жидкости в организме (избыточное скопление ее в тканях и серозных полостях).

§ 209. Обезвоживание

Обезвоживание организма развивается вследствие либо ограничения приема воды, либо избыточного выделения ее из организма при недостаточной компенсации потерянной жидкости (обезвоживание от недостатка воды). Дегидратация может возникнуть также вследствие избыточной потери и недостаточного восполнения запасов минеральных солей (обезвоживание от недостатка электролитов).

§ 210. Обезвоживание от недостатка поступления воды

У здоровых людей ограничение или полное прекращение поступления воды в организм происходит при чрезвычайных обстоятельствах: у заблудившихся в пустыне, у засыпанных при обвалах и землетрясениях, при кораблекрушениях и т. д. Однако значительно чаще водный дефицит наблюдается при различных патологических состояниях:

  1. при затруднении глотания (сужение пищевода после отравления едкими щелочами, при опухолях, атрезии пищевода и т. д.);
  2. у тяжелобольных и ослабленных лиц (коматозное состояние, тяжелые формы истощения и др.);
  3. у недоношенных и тяжелобольных детей;
  4. при некоторых заболеваниях головного мозга (идиотии, микроцефалии), сопровождающихся отсутствием чувства жажды.

В указанных случаях развивается обезвоживание организма от абсолютного недостатка воды.

В процессе жизни человек непрерывно теряет воду. Обязательные, несократимые расходы воды следующие: минимальное количество мочи, определяемое концентрацией веществ в крови, подлежащих выведению, и концентрационной способностью почек; потери воды через кожу и легкие (лат. perspiratio insensibilis - неощутимое пропотевание); потери с калом. Водный баланс взрослого организма в состоянии абсолютного голодания (без воды) приводится в табл. 22.

Из нее следует, что в состоянии абсолютного голодания возникает суточный дефицит воды в 700 мл. Если этот дефицит не восполняется извне, возникает обезвоживание.

В состоянии водного голодания организм использует воду из водных депо (мышцы, кожа, печень). У взрослого человека массой 70 кг в них содержится до 14 л воды. Продолжительность жизни взрослого человека при абсолютном голодании без воды при нормальных температурных условиях составляет 7-10 дней.

Детский организм значительно тяжелее переносит обезвоживание по сравнению со взрослым. При одинаковых условиях грудные дети на единицу поверхности тела, приходящейся на 1 кг массы, теряют через кожу и легкие в 2-3 раза больше жидкости. Сохранение воды почками у грудных детей выражено чрезвычайно плохо (концентрационная способность почек у них низкая), а функциональные резервы воды у ребенка в 3,5 раза меньше, чем у взрослого. Интенсивность обменных процессов у детей намного выше. Следовательно, и потребность в воде, а также чувствительность к ее недостатку выше по сравнению со взрослым организмом.

§ 211. Избыточные потери воды

Обезвоживание от гипервентиляции. У взрослых суточная потеря воды через кожу и легкие может повышаться до 10-14 л (в нормальных условиях это количество не превышает 1 л). Особенно большое количество жидкости теряется через легкие в детском возрасте при так называемом гипервентиляционном синдроме (глубокое частое дыхание, продолжающееся в течение значительного времени). Такое состояние сопровождается потерей большого количества воды без электролитов, газовым алкалозом. В результате обезвоживания и гиперсалемии (повышение концентрации солей в жидкостных средах организма) у таких детей нарушается функция сердечно-сосудистой системы, повышается температура тела, страдает функция почек. Возникает опасное для жизни состояние.

Обезвоживание от полиурии может возникнуть, например, при несахарном диабете, врожденной форме полиурии, некоторых формах хронического нефрита и пиелонефрита и т. д.

При несахарном диабете суточное количество мочи с низкой относительной плотностью у взрослых может достигать 40 л и более. Если потеря жидкости компенсируется, то водный обмен остается в равновесии, не возникает обезвоживания и расстройства осмотической концентрации жидкостных сред организма. Если потеря жидкости не компенсируется, то в течение нескольких часов наступает тяжелое обезвоживание с коллапсом, лихорадкой и гиперсалемией.

§ 212. Обезвоживание от недостатка электролитов

Электролиты организма, помимо других важных свойств, обладают способностью связывать и удерживать воду. Особенно активны в этом отношении ионы натрия, калия, хлора и др. Поэтому, когда организм теряет и недостаточно восполняет электролиты, развивается обезвоживание. Обезвоживание продолжает развиваться также при свободном приеме воды и не может быть устранено одним только введением воды без восстановления нормального электролитного состава жидкостных сред организма. При данном виде обезвоживания потеря воды организмом происходит в основном за счет внеклеточной жидкости (до 90% от объема потерянной жидкости и только 10% теряется за счет внутриклеточной жидкости), что крайне неблагоприятно сказывается на гемодинамике из-за быстро наступающего сгущения крови.

§ 213. Экспериментальное воспроизведение обезвоживания

"Синдром обезвоживания", характеризующийся потерей воды и электролитов, ацидозом, расстройствами кровообращения, нарушением деятельности центральной нервной системы, почек, желудочно-кишечного тракта и других органов и систем, может быть получен в эксперименте различными путями:

  1. ограничением или лишением организма воды в сочетании с дачей пищи, богатой белками;
  2. лишение организма воды и солей путем перорального введения сернокислого магния (в качестве слабительного) при одновременном повышении температуры окружающей среды;
  3. внутривенным введением гипертонических растворов различных сахаров (осмотический диурез);
  4. многократным откачиванием желудочного сока или дачей рвотных средств (апоморфин и др.);
  5. внутриперитонеальным диализом;
  6. искусственным сужением пилорического отдела желудка или начальной части двенадцатиперстной кишки с постоянным отведением наружу секрета поджелудочной железы и др.

Указанные методы ведут к преимущественной первичной потере организмом либо воды, либо электролитов (вместе с соками желудочно-кишечного тракта) и быстрому развитию обезвоживания с последующим нарушением постоянства внутренней среды и функции различных органов и систем. Особое место при этом принадлежит нарушению деятельности сердечно-сосудистой системы (ангидремическое расстройство кровообращения).

§ 214. Влияние обезвоживания на организм

  • Сердечно-сосудистая система [показать]

    Значительное обезвоживание организма ведет к сгущению крови - ангидремии. Это состояние сопровождается расстройством ряда гемодинамических показателей.

    Объем циркулирующей крови и плазмы при обезвоживании уменьшается. Так, при экспериментальном обезвоживании животных - при потере воды, составляющей 10% массы тела, - наблюдается снижение объема циркулирующей крови на 24% при уменьшении количества плазмы на 36%.

    Происходит перераспределение крови. Жизненно важные органы (сердце, мозг, печень) за счет значительного снижения кровоснабжения почек и скелетной мускулатуры относительно лучше других снабжаются кровью.

    При тяжелых формах обезвоживания систолическое артериальное давление падает до 60-70 мм рт. ст. и ниже. В крайне тяжелых случаях обезвоживания оно вообще может не определяться. Венозное давление также понижается.

    Минутный объем сердца в тяжелых случаях обезвоживания снижается до 1/3 и даже 1/4 нормальной величины.

    Время кругооборота крови удлиняется по мере снижения величины минутного объема сердца. У грудных детей при тяжелом обезвоживании оно может быть удлинено в 4-5 раз по сравнению с нормой.

  • Центральная нервная система [показать]

    В основе расстройств центральной нервной системы при обезвоживании (судороги, галлюцинации, коматозное состояние и т. д.) лежит нарушение кровообращения нервной ткани. Это приводит к следующим явлениям:

    1. недостаточному подвозу питательных веществ (глюкозы) к нервной ткани;
    2. недостаточному снабжению нервной ткани кислородом;
    3. нарушению ферментативных процессов в нервных клетках.

    Величина парциального давления кислорода в венозной крови головного мозга человека достигает критических цифр, приводящих к коматозному состоянию (ниже 19 мм рт. ст.). Расстройству деятельности центральной нервной системы способствует также понижение артериального давления в большом кругу кровообращения, нарушение осмотического равновесия жидкостных сред организма, ацидоз и азотемия, развивающиеся при обезвоживании.

  • Почки [показать]

    Главной причиной снижения выделительной способности почек является недостаточное кровоснабжение почечной паренхимы. Это быстро может привести к азотемии с последующей уремией.

    В тяжелых случаях обезвоживания могут наблюдаться и анатомические изменения почек (некротическое обызвествление канальцев с предварительным исчезновением активности фосфатазы эпителия этих канальцев; тромбозы почечных вен, закупорка почечной артерии, симметричные кортикальные некрозы и др.). Возникновение азотемии зависит как от понижения фильтрации, так и от повышения реабсорбции мочевины в канальцах. Непропорционально большая реабсорбция мочевины, видимо, связана с поражением канальцевого эпителия. Нагрузка на почки как на выделительный орган при обезвоживании повышена. Почечная недостаточность является решающим фактором в механизме негазового ацизода (накопление кислых продуктов белкового обмена, кетоновых тел, молочной, пировиноградной, лимонной кислот и др.).

  • Желудочно-кишечный тракт [показать]

    Вследствие торможения ферментативных процессов, а также из-за угнетения перистальтики желудка и кишечника при обезвоживании возникает растяжение желудка, парез кишечной мускулатуры, уменьшение всасывания и прочие расстройства, ведущие к нарушению пищеварения. Ведущим фактором при этом является тяжелое ангидремическое расстройство кровообращения желудочно-кишечного тракта.

§ 215. Задержка воды в организме

Задержка воды в организме (гипергидратация) может наблюдаться при чрезмерном введении воды (водное отравление), либо при ограничении выделения жидкости из организма. При этом развиваются отек и водянка.

§ 216. Водное отравление

Экспериментальное водное отравление можно вызвать у различных животных, нагружая их избыточным количеством воды (превышающим выделительную функцию почек) при одновременном введении антидиуретического гормона (АДГ). Например, у собак при повторном многократном (до 10-12 раз) введении в желудок воды по 50 мл на 1 кг массы с интервалами в 0,5 ч наступает водная интоксикация. При этом возникает рвота, мышечные подергивания, судороги, коматозное состояние и нередко смертельный исход.

От чрезмерной водной нагрузки увеличивается объем циркулирующей крови (так называемая олигоцитемическая гиперволемия, см. § 222), возникает относительное уменьшение содержания белков и электролитов крови, гемоглобина, гемолиз эритроцитов и гематурия. Диурез первоначально увеличивается, затем начинает относительно отставать от количества поступающей воды, а при развитии гемолиза и гематурии происходит истинное уменьшение мочеотделения.

Водное отравление может возникнуть у человека, если поступление воды превосходит способность почек к ее выделению, например, при некоторых почечных заболеваниях (гидронефроз и др.), а также при состояниях, сопровождающихся острым уменьшением или прекращением отделения мочи (у хирургических больных в послеоперационном периоде, у больных в состоянии шока и др.). Описано возникновение водного отравления у больных несахарным мочеизнурением, продолжавших принимать большое количество жидкости на фоне лечения антидиуретическими гормональными препаратами.

§ 217. Отеки

Отеком называется патологическое скопление жидкости в тканях и межтканевых пространствах вследствие нарушения обмена воды между кровью и тканями. Жидкость может задерживаться также внутри клеток. При этом нарушается обмен воды между внеклеточным пространством и клетками. Такие отеки называются внутриклеточными. Патологическое скопление жидкости в серозных полостях организма именуется водянкой. Скопление жидкости в брюшной полости называется асцитом, в плевральной полости - гидротораксом, в околосердечной сумке - гидроперикардиумом.

Скопившаяся в различных полостях и тканях невоспалительная жидкость называется транссудатом. Его физико-химические свойства отличаются от таковых свойств экссудата - воспалительного выпота (см. § 99).

Таблица 23. Содержание воды в организме (в процентах к массе тела)
Общее содержание воды Внеклеточная жидкость Внутриклеточная жидкость
Эмбрион 2 мес 95
Плод 5 мес 87
Новорожденный 80 40-50 30-40
Ребенок 6 мес 70 30-35 35-40
Ребенок 1 года 65 25 40
Ребенок 5 лет 62 22 40
Взрослый 60 20 40

Общее содержание воды в организме зависит от возраста, массы тела, пола. У взрослого оно составляет около 60% массы тела. Почти 3/4 этого объема воды находится внутри клеток, остальная часть - вне клеток. Детский организм содержит относительно большее количество воды, однако с функциональной точки зрения организм ребенка беден водой, так как потери ее через кожу и легкие у него в 2-3 раза больше, чем у взрослого, а потребность в воде у новорожденного составляет 120-160 мл на 1 кг массы, а у взрослого 30-50 мл/кг.

Жидкости организма обладают довольно постоянной концентрацией электролитов. Постоянство электролитного состава поддерживает постоянство объема жидкостей организма и определенное распределение их по секторам. Изменение электролитного состава приводит к перераспределению жидкостей внутри организма (сдвиги воды) либо к усиленному выведению, либо к задержке их в организме. Увеличение общего содержания воды в организме может наблюдаться при сохранении ее нормальной осмотической концентрации. В этом случае имеется изотоническая гипергидратация. В случае уменьшения или увеличения осмотической концентрации жидкости говорят о гипо- или гипертонической гипергидратации. Снижение осмолярности биологических жидкостей организма ниже 300 моcм на 1 л называется гипоосмией, повышение осмолярности выше 330 мосм/л - гиперосмией, или гиперэлектролитемией.

Механизмы возникновения отеков

Обмен жидкости между сосудами и тканями происходит через капиллярную стенку. Эта стенка представляет достаточно сложно устроенную биологическую структуру, которая относительно легко транспортирует воду, электролиты, некоторые органические соединения (мочевину), но задерживает белки, в результате чего концентрация последних в плазме крови и тканевой жидкости не одинакова (соответственно 60-80 и 15-30 г/л). Согласно классической теории Старлинга обмен воды между капиллярами и тканями определяют следующие факторы: 1) гидростатическое давление крови в капиллярах и величина тканевого сопротивления; 2) коллоидно-осмотическое давление плазмы крови и тканевой жидкости; 3) проницаемость капиллярной стенки.

Кровь движется в капиллярах с определенной скоростью и под определенным давлением, в результате чего создаются гидростатические силы, стремящиеся вывести воду из капилляров в окружающие ткани. Эффект гидростатических сил будет тем больше, чем выше кровяное давление, чем меньше сопротивление со стороны тканей, находящихся вблизи капилляров. Известно, что сопротивление мышечной ткани больше, чем подкожной, особенно на лице.

Величина гидростатического давления крови в артериальном конце капилляра составляет в среднем 32 мм рт. ст., а в венозном конце - 12 мм рт. ст. Сопротивление ткани равно приблизительно 6 мм рт. ст. Следовательно, эффективное фильтрационное давление в артериальном конце капилляра составит 32-6 = 26 мм рт. ст., а в венозном конце капилляра-12-6 = 6 мм рт. ст.

Удерживают воду в сосудах белки, создающие определенную величину онкотического давления крови (22 мм рт. ст.). Тканевое онкотическое давление равно в среднем 10 мм рт. ст. Онкотическое давление белков крови и тканевой жидкости имеет противоположное направление действия: белки крови удерживают воду в сосудах, белки тканей - в тканях. Поэтому эффективная сила (эффективное онкотическое давление), которая сохраняет воду в сосудах, составит: 22-10=12 мм рт. ст. Фильтрационное давление (разность между эффективным фильтрационным и эффективным онкотическим давлением) обеспечивает процесс ультрафильтрации жидкости из сосуда в ткань. В артериальном конце капилляра оно составит: 26-12=14 мм рт. ст. В венозном конце капилляра эффективное онкотическое давление превосходит эффективное фильтрационное давление и создается сила, равная 6 мм рт. ст. (6-12 = -6 мм рт. ст.), обусловливающая процесс перехода межтканевой жидкости обратно в кровь. По Старлингу здесь должно существовать равновесие: количество жидкости, покидающей сосуд в артериальной части капилляра, должно быть равно количеству жидкости, переходящей внутрь сосуда в венозном конце капилляра. Однако часть межтканевой жидкости транспортируется в общий кровоток через лимфатическую систему, чего не учитывал Старлинг. Это довольно существенный механизм возврата жидкости в кровяное русло, при повреждении которого могут возникать так называемые лимфатические отеки.

Обмен жидкости между сосудами и тканями показаны на рис. 39.

Влево от точки А (АВ) происходит выход жидкости из капилляра в окружающие ткани, вправо от точки А (Ас) - обратный ток жидкости из тканей в капилляр. Если повышается величина гидростатического давления (Р"а") или понижается онкотическое давление (В"с"), то А перемещается в положение А1 или А2. При этом переход жидкости из тканей в сосуды затрудняется вследствие уменьшения сосудистой поверхности, с которой осуществляется резорбция жидкости из тканей в сосуд. Возникают условия для задержки воды в тканях и развития отека.

  • Роль гидростатического фактора [показать]

    При возрастании гидростатического давления в сосудах (Р"а" на рис. 39) возрастает фильтрационное давление, а также поверхность сосудов (ВА 1 , а не ВА, как в норме), через которую происходит фильтрация жидкости из сосуда в ткань. Поверхность же, через которую осуществляется обратный ток жидкости(A 1 C, а не Ас, как в норме), уменьшается. Наступает задержка жидкости в тканях. Возникает так называемый механический, или застойный, отек. По такому механизму развиваются отеки при тромбофлебитах, отеки ног у беременных. Важную роль этот механизм играет при возникновении сердечных отеков и т. д.

  • Роль коллоидно-осмотического фактора [показать]

    При уменьшении величины онкотического давления крови (прямая В"с" на рис. 39) возникают так называемые онкотические отеки. Механизм их развития связан прежде всего с уменьшением величины эффективного онкотического давления крови, а следовательно, и силы, которая удерживает воду в сосудах и возвращает ее из тканей в общий кровоток. Помимо этого, увеличивается поверхность сосудов, через которую происходит процесс фильтрации жидкости при одновременном уменьшении резорбционной поверхности сосудов (см. рис. 39); при нормальной величине онкотического давления фильтрация жидкости происходит на участке сосуда, определяемом отрезком ВА, резорбция - отрезков Ас; при понижении онкотического давления (В"с") фильтрация осуществляется на участке В"А 2 , а резорбция - на участке А 2 с".

    Впервые экспериментальные доказательства такого механизма отеков были получены Старлингом. Оказалось, что изолированная лапа собаки, через сосуды которой пропускали изотонический раствор поваренной соли, становилась отечной; отек исчезал после пропускания через сосуды лапы сыворотки крови. Коллоидно-осмотический механизм играет важную роль в происхождении почечных (особенно при нефрозе), печеночных и так называемых кахектических (кахексия - резкое общее истощение организма, развивающееся при неполноценном питании, некоторых хронических заболеваниях - туберкулезе, злокачественных опухолях, болезнях желез внутренней секреции, желудочно-кишечного тракта и др.) отеков.

  • Роль проницаемости капиллярной стенки [показать]

    Увеличение проницаемости сосудистой стенки может способствовать возникновению и развитию отеков. Однако это нарушение может вести к усилению процессов как фильтрации в артериальном конце капилляра, так и резорбции в венозном конце. При этом равновесие между фильтрацией и резорбцией воды может и не нарушаться. Поэтому здесь важное значение имеет повышение проницаемости капилляров для белков плазмы крови, вследствие чего падает эффективное онкотическое давление преимущественно за счет увеличения онкотического давления тканевой жидкости. Отчетливое повышение проницаемости капилляров для белков плазмы крови отмечается, например, при остром воспалении. Содержание белков в ткани при этом резко нарастает в первые 15-20 мин после действия патогенного фактора, стабилизируется в течение последующих 20 мин, а с 35-40-й минуты начинается второй подъем увеличения концентрации белков в ткани, связанный, по-видимому, с нарушением лимфотока и затруднением отвода белков из очага воспаления.

    Нарушение проницаемости сосудистых стенок связано с накоплением медиаторов повреждения (см. § 124) и с расстройством нервной регуляции тонуса сосудов.

    Проницаемость сосудистой стенки может повышаться при действии различных химических веществ (хлор, фосген, дифосген, люизит и др.), бактериальных токсинов (дифтерийный, сибиреязвенный и др.), а также ядов различных насекомых и пресмыкающихся (пчелы, змеи и т. д.). Под влиянием воздействия этих агентов, помимо повышения проницаемости сосудистой стенки, происходит нарушение тканевого обмена и образование продуктов, усиливающих набухание коллоидов и повышающих осмотическую концентрацию тканевой жидкости. Возникающие при этом отеки называются токсическими. В механизме развития отеков, помимо указанных, принимают участие и другие факторы.

  • Роль лимфообращения [показать]

    Нарушение транспорта жидкости и белков по лимфатической системе из интерстициальной ткани в общий кровоток создает благоприятные условия для развития отеков. Так, например, при повышении давления в системе верхней полой вены (сужение устья полых вен, стеноз трикуспидального клапана сердца) возникает мощный прессорный рефлекс на лимфатические сосуды организма, вследствие чего затрудняется отток лимфы из тканей. Это способствует развитию отека при сердечной недостаточности.

    При значительном понижении концентрации белков в крови (ниже 35 г/л), например при нефротическом синдроме, лимфоток существенно увеличивается и ускоряется. Однако, несмотря на это, вследствие чрезвычайно интенсивной фильтрации жидкости из сосудов (см. роль коллоидно-осмотического фактора в механизме развития отеков) она не успевает транспортироваться по лимфатической системе в общий кровоток в связи с перегрузкой транспортных возможностей лимфатических путей. Возникает так называемая динамическая лимфатическая недостаточность, способствующая возникновению нефротических отеков.

  • Роль активной задержки электролитов и воды

    Важным фактором в развитии некоторых видов отеков (сердечные, нефротические, печеночные и др.) является активная задержка электролитов и воды в организме. Изменение осмотической концентрации жидкостей организма и их объема связано с нарушениями регулирующей функции нервных механизмов, гормональных факторов и выделительной функции почек (рис. 40). В сооответствии с солевым балансом задерживается или выводится эквивалентное количество воды. Это обусловлено тесной взаимосвязью осмо- и объеморегуляции: реабсорбция солей определяется объемом жидкостей организма, а реабсорбция воды - концентрацией солей в этих жидкостях (схема 12).

    В патологии уменьшение минутного и общего объема крови, снижение артериального давления, отрицательный баланс натрия, повышение адренокортикотропной функции гипофиза, травма, эмоциональные реакции и другие факторы ведут к повышению секреции альдостерона. Особо важная роль в этом отношении принадлежит ренинангиотензинной системе (схема 13). При сердечной недостаточности, циррозе печени, нефротическом синдроме обнаруживается значительное повышение концентрации альдостерона в крови (вторичный альдостеронизм см. § 328). Имеются убедительные данные о том, что и секреция АДГ при этих состояниях возрастает. Установлено, что стойкий гиперальдостеронизм при сердечной недостаточности и циррозе печени является результатом не только повышенной секреции, но и пониженной инактивации альдостерона печенью. Во всех указанных случаях наблюдается нарастание объема внеклеточной жидкости, которое, казалось, должно было бы затормозить увеличение продукции альдостерона и АДГ, однако этого не происходит. При таких обстоятельствах избыток альдостерона и АДГ уже не играет защитной роли и механизмы, сохраняющие гомеостазис у здорового человека, в этих условиях "ошибаются", в результате чего скопление жидкости и соли увеличивается. В этом плане отечные состояния могут рассматриваться как "болезни гомеостаза" или "болезни адаптации", возникающие, по Селье, в результате чрезмерной продукции кортикостероидных гормонов.

Сердечные отеки. В формировании сердечных отеков важная роль принадлежит активной задержке в организме солей и воды. Считают, что начальным звеном в развитии этой задержки является уменьшение минутного объема сердца (см. схему 13).

Развивающиеся при сердечной недостаточности повышение венозного давления и застой крови способствуют развитию отека. Повышение давления в верхней полой вене вызывает спазм лимфатических сосудов, приводя к лимфатической недостаточности, что еще больше усугубляет отек. Нарастающее расстройство общего кровообращения может сопровождаться расстройством деятельности печени и почек. При этом возникает снижение синтеза белков в печени и усиление выведения их через почки с последующим снижением онкотического давления крови. Наряду с этим при сердечной недостаточности повышается проницаемость капиллярных стенок, и белки крови переходят в межтканевую жидкость, повышая ее онкотическое давление. Все это способствует скоплению и задержке воды в тканях при сердечной недостаточности. Нервно-гуморальное звено в сложном механизме развития сердечного отека показано на схеме 13.

Почечные отеки. При поражении почек могут возникать нефротические и нефритические отеки.

В возникновении нефротических отеков принимает участие ряд факторов. Некоторые из них представлены на схеме 14.

Уменьшение количества белков плазмы крови (гипопротеинемия) обусловлено большой потерей белков (главным образом альбумина) с мочой. Альбуминурия связана с повышением проницаемости почечных клубочков и нарушением обратного всасывания белков почечными канальцами. При тяжелых нефрозах потеря белка организмом может достигать 60 г за сутки, а концентрация его в крови может падать до 20-30 г/л и ниже. Отсюда становится понятным значение онкотического фактора в механизме развития нефротических отеков. Усиленная транссудация жидкости из кровеносных сосудов в ткани и развитие динамической лимфатической недостаточности (см. выше) способствуют развитию гиповолемии (уменьшение объема крови) с последующей мобилизацией альдостеронового механизма задержки натрия и антидиуретического механизма задержки воды в организме (схема 14).

Нефритические отеки. В крови больных нефритом отмечается повышенная концентрация альдостерона и АДГ. Считают, что гиперсекреция альдостерона обусловлена нарушением внутрипочечной гемодинамики с последующим включением ренин-ангиотензинной системы. Образующийся под воздействием ренина через ряд промежуточных продуктов ангиотензин-2 непосредственно активирует секрецию альдостерона. Таким образом мобилизуется альдостероновый механизм задержки натрия в организме. Гипернатриемия (усугубляющаяся также снижением фильтрационной способности почек при нефритах) через осморецепторы активирует секрецию АДГ, под воздействием которого повышается гиалуронидазная активность не только эпителия почечных канальцев и собирательных трубочек почек, но и обширной части капиллярной системы организма (генерализованный капиллярит). Отмечается снижение выведения воды через почки и системное повышение проницаемости капилляров, в частности, для белков плазмы крови. Поэтому отличительной чертой нефритических отеков является высокое содержание белка в межтканевой жидкости и повышенная гидрофильность тканей.

Гидратации тканей способствует также увеличение в них осмотически активных веществ (в основном солей) за счет уменьшения выведения их из организма.

Асцит и отек при циррозе печени. При циррозе печени наряду с местным скоплением жидкости в брюшной полости (асцит) увеличивается общий объем внеклеточной жидкости (печеночные отеки). Первичным моментом возникновения асцита при циррозе печени является затруднение внутрипеченочного кровообращения с последующим повышением гидростатического давления в системе воротной вены. Постепенно скапливающаяся внутри брюшной полости жидкость повышает внутрибрюшное давление до такой степени, что оно противодействует развитию асцита. Онкотическое давление крови при этом не понижается до тех пор, пока не нарушается функция печени синтезировать белки крови. Однако, когда это произойдет, асцит и отек развиваются значительно быстрее. Содержание белков в асцитической жидкости обычно очень низкое. С повышением гидростатического давления в области воротной вены резко усиливается лимфоток в печени. При развитии асцита транссудация жидкости превосходит транспортную емкость лимфатических путей (динамическая лимфатическая недостаточность).

Важная роль в механизме развития общего скопления жидкости при циррозе печени отводится активной задержке натрия в организме. Отмечено, что концентрация натрия в слюне и поте при асците низкая, концентрация калия же высокая. В моче содержится большое количество альдостерона. Все это указывает либо на повышение секреции альдостерона, либо на недостаточную инактивацию его в печени с последующей задержкой натрия. Имеющиеся экспериментальные и клинические наблюдения позволяют допустить возможность наличия обоих механизмов.

При нарушении способности печени синтезировать альбумины понижается онкотическое давление крови вследствие развивающейся гипоальбуминемии, и к перечисленным выше факторам, участвующим в механизме развития отека, присоединяется еще онкотический.

Значение отека для организма. Как видно из изложенного, в образовании различных видов отеков (сердечных, почечных, печеночных, кахектических, токсических и т. д.) участвуют многие общие механизмы: повышение гидростатического давления в сосудах, повышение проницаемости сосудистой стенки для белков плазмы крови, повышение коллоидно-осмотического давления в тканях, недостаточность лимфообращения и возврата жидкости из тканей в кровь, понижение тканевого сопротивления, уменьшение онкотического давления крови, включение механизмов, активно задерживающих натрий и воду в организме и т. д. Эти типичные механизмы формируют отеки у разнообразных высокоорганизованных представителей животного мира в том числе и у человека.

Это обстоятельство, как и большая частота развития отеков при различных повреждениях организма (отек - один из важнейших показателей повреждения) позволяет относить его к типичным патологическим процессам. Как и любой патологический процесс, отеки обладают как повреждающими свойствами, так и элементами защиты.

Развитие отека приводит к механическому сдавлению тканей и нарушению в них кровообращения. Избыток межтканевой жидкости затрудняет обмен веществ между кровью и клетками. Вследствие нарушения трофики отечные ткани легче инфицируются, иногда отмечается развитие в них соединительной ткани. Если отечная жидкость гиперосмотична (например, у больных с сердечными отеками, которые нарушают солевой режим), наступает обезвоживание клеток с мучительным чувством жажды, повышением температуры, двигательным беспокойством и т. д. Если же отечная жидкость гипоосмотична, развивается отек клеток с клиническими признаками водного отравления. Нарушение электролитного баланса при отеках может вести к нарушению кислотно-щелочного равновесия жидких сред организма. Опасность отека в значительной мере определяется его локализацией. Скопление жидкости в полостях головного мозга, сердечной сумке, в плевральной полости нарушает функцию важных органов и нередко угрожает жизни.

Из защитно-приспособительных свойств следует указать на следующие: переход жидкости из сосудов в ткани и задержка ее там способствуют освобождению крови от растворенных в ней (иногда токсических) веществ, а также сохранению постоянства осмотического давления жидкостных сред организма. Отечная жидкость способствует уменьшению концентрации различных химических и токсических веществ, способных вызывать развитие отеков, снижая их патогенное действие. При воспалительных, аллергических, токсических и некоторых других видах отеков вследствие затруднения оттока крови и лимфы из очага повреждения (отечная жидкость сдавливает кровеносные и лимфатические сосуды) происходит уменьшение всасывания и распространения по организму различных токсических веществ (бактерии, токсины, аллергены и т. д.).

Статьи по теме